Brakes – Internal-resistance motion retarder – Magnetic fluid or material
Reexamination Certificate
1999-09-16
2002-05-21
Rodriguez, Pam (Department: 3613)
Brakes
Internal-resistance motion retarder
Magnetic fluid or material
C188S267000, C188S322150, C188S322220
Reexamination Certificate
active
06390252
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to damping devices used in controlled damping applications such as semi-active vehicle suspension systems. More particularly, the present invention relates to high performance controlled damping devices using magnetorheological (MR) fluid.
BACKGROUND OF THE INVENTION
High performance controlled damping applications, such as those used in passenger vehicle suspension systems, preferably provide a relatively low damping force at low speeds for comfort, and provide relatively high damping force at high speeds for safe handling of the vehicle.
One known semi-active suspension was introduced on General Motors cars and used continuously variable real-time damping (CV-RTD) actuators. The CV-RTD was based on pulse width modulation (PWM) of a two-stage pressure control valve that produces a desired damping force by using an electromagnetic solenoid to continuously modulate an armature plate. This actuator requires a triple tube construction and a complex valve design that results in a relatively expensive system that is rather sensitive to manufacturing tolerance. Previous analysis and test data showed that the stiffness of the deflective disk plays a key role in determining the dynamic stability of the CV-RTD valve. It was also not possible to achieve high frequency wheel control with the current CV-RTD based suspension system. It would be desirable to develop cost effective, high performance and robust RTD actuators using, for example, smart fluids (e.g., Electrorheological (ER) and Magnetorheological (MR) fluids) with controllable rheology and fixed flow area instead of moving mechanical valves with variable flow area. ER fluids require very high electrical fields (on the order of 5 kV/mm i.e., Kilovolt/milimeter) to produce the desired effects, whereas MR fluids produce similar effects at voltages well below 12V and hence are preferred for automotive use.
Magnetorheological (MR) fluids consist of magnetizable microparticles (e.g., iron and/or iron alloy powders) suspended in an inert base fluid (e.g., synthetic oil). MR fluids exhibit Newtonian Flow characteristics, with negligible yield stress, when there is no external magnetic field. However, the yield stress of a MR fluid can be increased by several orders of magnitude by subjecting it to a magnetic field perpendicular to the flow direction. This Bingham plastic behavior of MR fluid in the “on” state is advantageous in creating actuators with controllable force or torque such as vibration dampers and clutches, without using any moving valves. MR fluids, and devices using the MR fluids, are well known. However, earlier problems with sedimentation and abrasion discouraged their use. Recent advances in material technology and electronics have renewed the interest in MR fluids for applications in smart actuators for fast and efficient control of force, e.g. damping, or torque in a mechanical system.
The damping performance of a MR fluid based CV-RTD damper is largely dependent on the force-velocity characteristics of the damper.
FIG. 1
illustrates the optimum force-velocity characteristics of a damper used in automotive applications. The slope of the off-state force-velocity curve should be as low as possible for a smooth ride, with a desirable value of approximately 600 N-s/m(Newton-second/meter). The on-state force-velocity curve preferably has an initial slope in the range of 5-30 kN-s/m(KiloNewton-second/meter) up to a velocity of 0.1 to 0.4 m/s(meter/second) and a final slope similar to that in the off-state. The desirable maximum on-force should be limited to a suitable value (e.g., 4500N) at 2 m/s. The ratio of the damping force when the damper is in the on-state (on-force) to the damping force when the damper is in the off-state (off-force) at a given velocity is known as the turn-up ratio. It is desirable to have a turn-up ratio of at least 3 to 6 at a velocity of 1 m/s for good control of the vehicle chassis dynamics.
FIG. 2
shows a known monotube MR damper
10
having a piston
12
sliding within a hollow tube
14
filled with MR fluid. The piston
12
is attached to a hollow rod
18
that slides within a sealed bearing
20
at one end of the body of the damper
10
. The piston
12
contains a coil
22
, which carries a variable current, thus generating a variable magnetic field across a flow gap
24
between an inner core
26
and an outer shell or flux ring
28
of the piston
12
. A bearing
30
having relatively low friction is disposed between the flux ring
28
and the tube
14
. The flux ring
28
and the inner core
26
of the piston
12
are held in place by spoked end plates
32
. Terminals
34
of the coil
22
extend through the hollow rod
18
and are provided with suitable insulation for connection to a source of electricity. One end
36
of the tube
14
is filled with inert gas which is separated from the MR fluid by a floating piston
38
. The floating piston
38
and inert gas
36
accommodate the varying rod volume during movement of the piston. U.S. Pat. No. 5,277,281 discloses a similar MR damper.
FIG. 3
illustrates the force-velocity characteristics of the type of MR damper disclosed in FIG.
2
. Clearly, in comparison to the preferred curves of
FIG. 1
, improvements in the force-velocity characteristics of conventional MR dampers are desirable. Although the above-described conventional MR dampers may perform adequately in certain applications, these devices do not achieve the required turn-up ratio and substantially stiction free performance near zero velocity for realistic automotive applications. For example, the conventional dampers often permit excessive flux leakage from the piston core into the piston rod and the cylinder disadvantageously reducing the average flux density, and creating an asymmetric distribution of flux in the flow gap, resulting in decreased performance and increased power requirements. Also, many conventional dampers create excessive turbulence in the flow of fluid through the flow gap thus decreasing damping performance. Therefore, there is a need for a more compact MR damper capable of more effectively and controllably damping motion.
SUMMARY OF THE INVENTION
The present invention is aimed at developing an MR fluid based continuously variable real-time damper that best approximates ideal performance requirements, while minimizing the damper size and power requirements.
This and other objects are achieved by providing a damping device comprising a hollow tube containing a magnetorheological fluid and a piston assembly slidably mounted in the hollow tube to form a first chamber positioned on one side of the piston assembly and a second chamber positioned on an opposite side of the piston assembly. The piston assembly includes a piston core, a substantially annular flow gap extending between the first and the second chambers and defining a flow path through the piston assembly, and a magnetic assembly adapted to generate a magnetic field extending across the substantially annular flow gap. The flow gap includes a first end positioned adjacent the first chamber and a second end positioned adjacent the second chamber. A laminar flow enhancing feature or means is mounted on the piston assembly and positioned adjacent the first and the second ends of the annular flow gap for enhancing laminar flow and minimizing turbulence in the annular flow gap. The laminar flow enhancing feature may include a respective flow opening positioned adjacent each of the first and second ends of the substantially annular flow gap. The respective flow opening has a funnel-shaped cross-section defined by an outer annular curved surface extending outwardly from the substantially annular flow gap toward the hollow tube and an inner annular curved surface extending inwardly from the substantially annular flow gap toward a longitudinal axis of the piston core.
The present invention is also directed to a damping device including a hollow tube, a piston assembly comprised of the piston core, substantially annular flow gap and magnet assembly as
Alexandridis Alexander Apostolos
Namuduri Chandra Sekhar
Delphi Technologies Inc.
Rodriguez Pam
Sigler Robert M.
LandOfFree
Magnetorheological fluid damper with optimum damping does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Magnetorheological fluid damper with optimum damping, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetorheological fluid damper with optimum damping will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2834294