Semiconductor device manufacturing: process – Having magnetic or ferroelectric component
Reexamination Certificate
2002-08-07
2004-08-03
Nguyen, Vinh P. (Department: 2829)
Semiconductor device manufacturing: process
Having magnetic or ferroelectric component
Reexamination Certificate
active
06770491
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to structures and methods for forming magnetic memory elements. More particularly, the present invention relates to structures and methods for forming an electrode for a magnetoresistive memory element of a magnetic random access memory (MRAM).
BACKGROUND OF THE INVENTION
An exemplary known magnetoresistive memory element, (hereinafter “magnetic memory cell”) of a known magnetic random access memory comprises, in general, a couple of ferromagnetic layers separated by a non-magnetic layer. One of the ferromagnetic layers has a high coercivity, and is provided a fixed or “pinned” magnetic vector. The other ferromagnetic layer has a lower coercivity, wherein the orientation of its magnetic vector can be “varied” by a field not large enough to re-orient the pinned layer. The layer of non-magnetic material of a tunneling magnetoresistance (TMR) device typically comprises a thin layer of insulating material which is made thin enough to permit electron tunneling—i.e., quantum mechanical tunneling of electrons from one of the ferromagnetic layers to the other. The passage of electrons through the stack of layered materials depends upon the orientation of the magnetic vector of the soft magnetic or variable layer relative to that of the pinned layer; electrons pass more freely when the magnetic vectors of the variable and pinned layers are aligned.
In an exemplary, known method of manufacturing a magnetoresistive memory cell, multiple layers of magnetic and non-magnetic materials are deposited and patterned over an electrically conductive wire, wherein a region of the electrically conductive wire serves as an electrode for the magnetic memory cell. In one arrangement, the layers of the magnetic cell are deposited as blanket layers over parallel wires and then etched into separate stacks. Each wire extends under several such stacks. Upper electrodes are formed by creating parallel conductive wires generally running perpendicular to the lower wires. Where the magnetic stacks extend between the lower conductive wires and the upper conductive wires at their intersections, the array is known as a “cross-point” cell configuration. One preferred exemplary material for the electrode of electrically conductive wire is copper. However, it has been found that chlorine-based etchants (e.g., as may be used for removing magnetic material from over select regions of the electrically conductive wire) can adversely effect the copper electrode. Accordingly, there is a need to protect copper of the electrically conductive wire from chemistries of processes that may be used during patterning of the magnetic material associated with the fabrication of a magnetic memory cell.
When a damascene scheme is employed to define the lower lines, grooves are formed within a layer of insulating material in the desired pattern of the lower wires. It is advantageous to employ copper for the wire/electrodes, due to its high conductivity, but copper has the disadvantage of quickly diffusing through typical oxide-based insulators. Accordingly, a barrier layer, e.g. a layer of tantalum, is formed as a liner conformably over the bottom and sidewalls of the groove. The barrier layer can also comprise multi-layered structures such as two layers of tantalum sandwiching a layer of nickel-iron to additionally perform a magnetic “keeper” function. A highly conductive material, preferably copper as noted, is then formed within the groove to define, at least in part, an electrode for the magnetic memory cell.
In a particular, exemplary, known damascene process for the formation of the electrically conductive wire, copper is formed in a groove lined with barrier material, as described above. A planarization process provides an etch-back of the copper until exposing material of the insulating layer. However, it has been found that different resistance of the barrier layer to the planarization process, as compared to copper's resistance, can result in an uneven topography. For example, a portion of the barrier layer can protrude above the exposed surface of the planarized copper and above the exposed surface of the insulating layer. Conversely, depending upon etch chemistry and materials, the barrier layer can be recessed relative to the upper surface of the structure.
When a layer of ferromagnetic material is deposited over such an uneven surface—e.g., with the protruding cars—the uneven surface may degrade or alter properties of the magnetic layer. Therefore, when forming layers of magnetic material over a surface to fabricate a magnetic memory, it is desirable that the surface comprises a smooth, flat or planar topography in order to preserve the integrity of the magnetic material. Accordingly, there is a need to provide a structure for, and process of fabricating, an electrode structure exhibiting a flat topography for a magnetic memory cell.
SUMMARY OF THE INVENTION
In accordance with an embodiment of the present invention, an electrode structure for a magnetic memory device comprises a layer of insulating material with a groove defined therein. Sidewalls of the groove meet a surface of the layer of insulating material to define an edge or lip. A liner is disposed conformably over the insulating material and within the groove. An electrically conductive wire is disposed within the groove, with a cap layer formed thereover. The cap layer comprises electrically conductive material different from that of the electrically conductive wire. Magnetic material is disposed over at least a portion of the electrically conductive wire.
In accordance with further aspects of this exemplary embodiment of the present invention, the cap comprises tantalum and the electrically conductive wire comprises copper. Additionally, the liner may comprise a multi-layered structure, such as a stack of a barrier or adhesion metal layer, a magnetic material layer and an optional additional barrier or adhesion layer.
In accordance with another embodiment of the present invention, a magneto-resistive memory element comprises a substrate having a layer of insulating material thereover. A groove that is defined within the insulating material has a liner disposed comformally therein. Electrically conductive material is disposed within the groove and over the liner. A protective layer is disposed over the electrically conductive material and within the groove, and comprises an outer surface that faces away from the electrically conductive material with an elevation substantially equal to that of the distal surface of the layer of insulating material. At least one layer of magneto-resistive material is disposed over a portion of the protective layer.
In accordance with a further aspect of these exemplary embodiments, the protective layer comprises tantalum and the electrically conductive material comprises copper. Additionally, the liner may comprise first and second layers of electrically conductive material that sandwich a layer of ferromagnetic material therebetween.
In accordance with a further exemplary embodiment of the present invention, a magneto-resistive random access memory device comprises a substrate and a layer of insulating material disposed over the substrate. Walls of the layer of insulating material define a groove within which first electrically conductive material is disposed as an electrically conductive wire. In addition, a liner is disposed conformably within the groove for isolating the first electrically conductive material from the insulating walls of the groove. A protective layer, comprising electrically conductive material different from the first electrically conductive material, is disposed within the groove and over the first electrically conductive material. The protective layer has a first surface that is in contact with the first electrically conductive material, and a second surface opposite the first. The second surface is level with that of a plane defined by a surface of the layer of insulating material. At least one layer of magneto-resistive material is disposed over
Geyer Scott B.
Knobbe Martens Olson & Bear LLP
Nguyen Vinh P.
LandOfFree
Magnetoresistive memory and method of manufacturing the same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Magnetoresistive memory and method of manufacturing the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetoresistive memory and method of manufacturing the same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3268847