Magnetically-suspended centrifugal blood pump

Pumps – Motor driven – Pump within rotary working member

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C417S365000, C417S423100, C417S423120

Reexamination Certificate

active

06227817

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to blood pumps suitable for permanent implantation in humans. More specifically, it relates to centrifugal pumps with magnetically suspended impellers suitable for use as ventricular assist devices.
2. Description of the Prior Art
Roughly 700,000 patients die from heart disease in the U.S. each year and 35,000 to 70,000 of these could benefit from mechanical circulatory support or a heart transplant. However, only about 2,500 transplant hearts become available each year. This translates to a profound need for a reliable mechanical blood pump to serve as a cardiac assist device or artificial heart.
Several prior-art devices attempt to solve this problem. Indeed, numerous embodiments of blood pumps exist, but are subject to significant operational problems. Such prior-art pumps are discussed hereinbelow.
In U.S. Pat. No. 4,688,998 issued to Olsen et al., a motor stator is disclosed that consists of C-shaped rings. The rings substantially increase the diameter of the pump contrary to the anatomical requirement of small size and weight.
In U.S. Pat. Nos. 4,763,032, 4,994,748, 5,078,741, 5,326,344, and 5,385,581, all issued to Bramm et al., a device is disclosed that requires two inflow channels, which increase the total blood-wetted surface. Among other things, this large contact area between artificial materials and the blood increases immune system response to the pump as well as the probability of thromboembolism. Further, connecting the two inlets of the pump to the heart is complex and requires additional tubing. Thus, anatomical interference of such pumps with natural organs and structures is increased.
In U.S. Pat. No. 5,112,202 issued to Oshima et al., a device is disclosed in the form of a centrifugal pump that utilizes a magnetic coupling with mechanical bearings subject to wear. This pump is not suitable for long-term implantation, as the bearings will eventually fail due to wear.
In U.S. Pat. No. 5,195,877 issued to Kletschka, a device is disclosed that requires two inflow channels, which increase the total blood-wetted surface. This large contact area between artificial materials and the blood increases immune system response to the pump. The large surface area also increases the probability of thromboembolism. Further, connecting the two inlets of the pump to the heart is complex and requires additional tubing. Thus, anatomical interference of the pump with natural organs and structures is increased.
In U.S. Pat. No. 5,443,503 issued to Yamane, a pump device is disclosed that has a jewel bearing. Such bearings are subject to wear in a long-term implant. Further, the jewel bearing is a point of blood stasis and is subject to clotting and may lead to thromboembolism.
In U.S. Pat. No. 5,470,208 issued to Kletschka, a device is disclosed that requires two inflow channels, which increase the total blood-wetted surface. This large contact area between artificial materials and the blood increases immune system response to the pump. The large surface area also increases the probability of thromboembolism. Further, connecting the two inlets of the pump to the heart is complex and requires additional tubing such that anatomical interference of the pump with natural organs and structures is increased. As well, this prior-art device has a point of stasis opposite to the inlet, which is a potential site for thrombus formation.
In U.S. Pat. No. 5,507,629 issued to Jarvik, a device is disclosed that includes a mechanical bearing in the form of a jewel bearing which is a point of blood flow stasis. The blood stasis point is a location of thrombus formation and a source of thromboembolism. Other embodiments of this invention levitate the rotor using only passive magnetic bearings which is inherently unstable especially during the requisite high-speed rotor rotation. Unstable rotors can contact the pump housing and potentially stop the blood flow.
In U.S. Pat. Nos. 5,695,471 and 5,840,070, both issued to Wampler, a blood pump is disclosed. Wampler '471 is similar to the device of Jarvik '629 in that there a stasis point at the jewel bearing. The stasis point is a site of thrombus formation and a source of thromboembolism. Further, the jewel bearing will eventually wear out and the impeller will cease to rotate. Wampler '070 uses a hydrodynamic thrust bearing. Such a bearing is highly inappropriate for use within blood processing because such bearings can damage the blood via high mechanical shear that is inherent to such bearings.
In U.S. Pat. No. 5,725,357 issued to Nakazeki, a device is disclosed in the form of a pump that contains a motor with mechanical bearings subject to wear. Such device is not suitable for a long-term implant as the mechanical bearings will eventually fail and cause the pump to stop working.
In U.S. Pat. No. 5,928,131 issued to Prem, a device is disclosed that uses a radial motor wherein the blood flows through the center of the motor. This reduces the allowable permanent magnet material in the motor and reduces its efficiency. Further, the elongated structure of the pump exposes blood to large regions of foreign material, which increases the likelihood of blood damage and thrombus formation. There is also a large region of high blood shear. Blood shear causes blood damage and can trigger undesirable clotting mechanisms in the body. Finally, the cantilevered design, with both bearings on the inlet side of the impeller impairs the rotor dynamics stability or requires larger, bulkier magnets.
From the discussion above, it becomes critically apparent that existing devices on the market are overly complex, prone to mechanical failure, promote thromboembolism and strokes, and otherwise suffer from shortcomings related to their ineffective designs.
Accordingly, it is desirable to provide for a new and improved, effective rotary blood pump suitable for long-term implantation into humans for artificial circulatory support. What is needed is such a blood pump that is highly reliable. What is also needed is such a blood pump that meets anatomical requirements with a compact physical design. What is further needed is such a blood pump that minimizes blood-wetted surface area. Still, what is needed is such a blood pump that minimizes deleterious effects on blood and its circulatory system, the immune system, and other related biological functions. What is also needed is such a blood pump that is not only resilient to everyday accelerations and bodily movements, but also includes stable rotor dynamics, a high motor efficiency, high fluid efficiency, low power consumption for levitation, low vibration, low manufacturing costs, and increased convenience to the patient. Still further, what is needed is a blood pump which overcomes at least some of the disadvantages of the prior-art while providing new and useful features.
SUMMARY OF THE INVENTION
It is an objective of the present invention to provide a highly reliable rotary blood pump suitable long-term implantation into humans for artificial circulatory support. More specifically, the objects of this invention are: to meet anatomical requirements of a compact device design; minimize blood-wetted surface area; minimize deleterious effects on the blood and the immune system, and other biological functions; be resilient to everyday accelerations and bodily movements; have stable rotor dynamics; have high motor efficiency; have high fluid efficiency; have low power consumption for levitation; have low vibration; have reduced manufacture costs; and have increased convenience to the patient.
The present invention is directed to a magnetically suspended centrifugal blood pump, and includes mixed-flow pumps with an axial inlet and radial outlet. By nature of the novel component configuration of the pump, it is compact and has minimal blood-wetted surfaces. Such compactness reduces internal surface area of the pump so that both impact on the immune system and probability of the formation of blood clots are significantly decreased. Through the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnetically-suspended centrifugal blood pump does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnetically-suspended centrifugal blood pump, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetically-suspended centrifugal blood pump will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2567922

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.