Electrical generator or motor structure – Dynamoelectric – Rotary
Reexamination Certificate
2002-05-09
2004-08-24
Mullins, Burton (Department: 2834)
Electrical generator or motor structure
Dynamoelectric
Rotary
C310S152000, C040S426000, C446S133000
Reexamination Certificate
active
06781270
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
BACKGROUND OF THE INVENTION
1. Field of Invention
This invention pertains to an apparatus for motion conversion using magnets that convert reciprocating movement into linear or rotational motion. More particularly, this invention pertains to a plurality of magnets disposed proximal to each other for conversion of reciprocating or random movement into useful motion.
2. Description of the Related Art
Prior magnetic drive mechanisms include a combination of a rotor and a stator with the rotor having at least one magnet thereon for rotation about the stator. According to magnetic principles, magnetic fields of rotors and stators interact in symmetrical alignment in radial fashion and concentric relationship with a magnetically driven output shaft. Magnetic or electromagnetic components of prior magnetic drive mechanisms rotate to a top, dead or center position, utilizing skewed magnetic lines as the components seek alignment and de-energizing prior to a top, dead or center position by timing methods to allow the rotor to continue in a rotational path. In prior magnetic drive mechanisms the stator includes a plurality of inwardly oriented poles and the rotor includes a plurality of outwardly oriented poles. In basic electromagnetic motor designs, the speed of the output shaft is a function of the frequency with which the polarities and voltages are alternated in relation to proper timing of the rotation and orientation of the respective magnetic fields generated to influence the rotor and/or the stator. Timing is addressed by coil arrangements, voltage frequency, reversal of current and electronic controls known to those skilled in the art.
One example of a prior art device is an electromagnetic rotary motor with a rotor means and a stator means. The stator means includes a permanent magnet means having a pair of magnets with pole faces that define a gap between the faces with a generally uniform magnet flux density across the gap. An entrance section, an exit section and a generally curved longitudinal path extend across the gap from the entrance section to the exit section around a transverse axis. The magnetic flux density changes as one moves from the entrance section to the exit section as a function of arc degree position around the transverse axis. The rotor means includes a predetermined number of permanent magnets disposed radially outward from the rotor axis. The rotor magnets are disposed substantially within the gap and the magnetic field of each rotor magnet interacts with the magnetic field of the stator magnets through repulsion or attraction. The rotary motor requires an electronic control means to induce an electromagnetic field that interacts with a magnetic field of the rotor magnet or the stator magnets to selectively enhance or retard the rotational speed of the rotor around a transverse axis. A timing circuitry determines when the electromagnet is energized, which in turn determines how quickly the electromagnet sequentially repels or attracts the rotor permanent magnets. The electromagnetic rotor motor is electrically connected to an external source of electrical energy for inducing an electromagnetic field that is responsive to the relative rotational position of the rotor magnets and the magnetic field of the stator means.
Another example of a prior art device is a rotating apparatus including a first group of members having magnets thereon and a second group of members having magnets thereon. A reciprocating rectilineal motion is created by the interaction between the first group of members having magnets thereon and the second group of members having magnets thereon, without any mechanical connection or contact between the same two members or groups of members having magnets thereon. The reciprocating rectilineal motion is obtained by connecting one of the two groups of magnets to pistons of a internal combustion engine and connecting the second of the two groups of magnets to a cylinder or magnet rotor of the engine. An outward stroke of a piston due to gas expansion and combustion inside the cylinders is followed by a return stroke of the piston effected by the action of a mechanical-energy-restoring system of the engine and the action of the mutual magnetic attraction between the first and second groups of members having magnets thereon. The reciprocating rectilineal motion of the apparatus moves the first group of members having magnets thereon along a first trajectory and moves the second group of members having magnets thereon along a second trajectory not parallel to the first trajectory during piston movements within an internal combustion engine.
An additional example of a prior art device is a jewelry mounting mechanism that freely rotates in an oscillating manner about a fixed center point. The mechanism includes a mounting base member having a perpendicular mounting stem attached to rotatably support a pendulum member having at least one pair of oppositely disposed magnets radially mounted to rotate about the stem within the base member. Above the pendulum member and freely rotatable about the mounting stem is a jewelry-setting platform having a pair of magnets thereon which are radially aligned with the magnets of the pendulum member so as to be rotatably activated by the movement of the pendulum. The identical magnetic poles of each pair of magnets are juxtaposed, one above the other on different layers of the mechanism, causing a repulsing rotational action between magnets. A pendulum member serves as the rotatable member, with magnets arranged apart on each layer of the ring, bracelet, or locket so that when the first magnets are positioned proximate the second magnets of the jewelry-setting platform, the respective magnets repel and attract each other upon movement by a wearer of the jewelry mounting mechanism.
There is a need for a system for motion and force conversion that utilizes a plurality of magnets oriented for converting linear or nonlinear motion from an external energy source such as the movement of a human, into rotational motion for a pair of rotor magnets radially disposed in relation to a central magnetic element that is attracted or repulsed at multiple pivot angles to cause continuous rotary motion upon movement of the rotor magnets.
BRIEF SUMMARY OF THE INVENTION
According to one embodiment of the present invention, an apparatus and a system is disclosed for producing magnetically induced rotary movement and/or random movement. The apparatus includes a first member having a first surface, and a pivot axis substantially perpendicular to the first surface and passing through an axial member disposed through the first member. At least one first magnet is disposed on the first surface, preferably proximal to a perimeter of the first member, with the first magnet having a first magnet axis defined by a first magnet north pole and a first magnet south pole. A second magnet is attached to the axial member with the second magnet axis and/or the first magnet axis disposed substantially circumferential to the pivot axis of the axial member. A second member is attached to the second magnet with the second member pivoting about the first member as the second magnet is alternately attracted and repulsed by the magnetic forces of the first magnet and alternately moved away from the first magnet by a gravity force.
The at least one first magnet further includes a third magnet that is positioned on a perimeter of the first member and is fixed on the first surface with the second magnet disposed between the first magnet and the third magnet, to allow magnetic interaction between the perimeter magnets and the second magnet. Linear rotation or nonlinear, random motion of the first surface is created due to random motion of the first member as induced by a support member to which the first member is attached. Motion of the perimeter magnets about the second magnet axis creates a reciprocating motion of the second magnet and second member. The first member and/
Harmonic Drive, Inc.
Mullins Burton
Pitts & Bristtian PC
LandOfFree
Magnetically coupled dangling apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Magnetically coupled dangling apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetically coupled dangling apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3356731