Magnetic stimulation coil and circuit design

Surgery – Magnetic field applied to body for therapy – Electromagnetic coil

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06527695

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the field of electromagnetic nerve stimulation. More specifically the present invention relates to a method and apparatus for nerve stimulation using optimal efficient parameters for the electrical charging circuit.
BACKGROUND OF THE INVENTION
Electrical stimulation has been successfully tested clinically for multiple applications tracing its roots back to the late 1800's where it was applied in the stimulation of the peripheral facial muscles by George Duchenne de Boulogne, see M. S. George, “Re-animating the face: early writings by Duchenne and Darwin on the neurology of facial emotion expression”,
J. Hist. Neurology
, vol.2, 1994, pp. 1-13. Since then it has been used for muscle rehabilitation (see e.g., G. A. Dudley, “Is electrical stimulation applicable to increase strength and power in normal humans?”, in
Human Muscular Function During Dynamic Exercise
, ed. by P. Marconnet, B. Saltin, P. Komi, and J. Pootmans, Karger Book Series: Medicine and Sport Science, Karger Publications, Basel, 1996, pp. 71-81), bed sore treatment, incontinence, and general diagnostics to mention only a few of its applications. Excitations that are repeated demand higher efficiency. Greater efficiency translates into lighter and smaller power supplies, and longer life for implantable devices.
Magnetic stimulation is only now catching up to electrical stimulation in terms of clinical uses. Early uses of MS were principally devoted to diagnostics, a good review of which is found in E. M. Wasserman, L. M. McShane, M. Hallett, and L. G. Cohen, “Noninvasive mapping of muscle representations in human cortex”,
Electroencephalography and Clinical Neurophysiology
, vol. 85, 1992, pp. 1-8. More recently rapid transcranial magnetic stimulation (rTMS) is being used in speech diagnosis, see e.g., C. M. Epstein, J. K. Lah, K. Meador, J. D. Weissman, L. E. Gaitan, B. Dihenia, “Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation”,
Neurology
, vol. 44, 1994, pp. 269-273. It is also being successful employed in the treatment of severe clinical depression, see e.g., A. Fleischman, K. Prolov, J. Abarbanel, R. H. Belmaker, “Effect of Transcranial magnetic stimulation on behavioral models of depression”,
Brain Research
, vol. 699, 1995, pp. 130-132 and B. Greenberg, U. McCann, J. Benjamin, D. Murphy, “Repetitive TMS as a probe in Anxiety Disorders: Theoretical Considerations and Case Reports”, CNS Spectrums, vol.2, no. 1, 1997, pp. 47-52. As more applications of the rapid magnetic stimulation surface, the issues of efficiency both within the body and the stimulation circuit arise.
In 1991 Barker, et. al., wrote a study on the effect of waveform efficiency in determining neural membrane efficiency. See A. Barker, C. Graham, and I. Freeston, “Magnetic nerve stimulation: the effect of waveform on efficiency, determination of neural time constants, and the measurement of stimulator output”,
Magnetic Motor Stimulation: Basic Principles and Clinical Experience
, EEG Supplemental 43, 1991, pp. 221-237. Following the suggestion of Plonsey, R. Plonsey,
Bioelectrical Phenomena
, McGraw Hill, New. York, 1969, Barker et. al. modeled the nerve membrane as a parallel capacitance and resistance, with an intracellular and extracellular resistance providing the closure path for any induced or injected currents. The energy necessary to achieve threshold stimulation was measured as a function of B field rise time. Threshold stimulation energy continued to drop with reduced rise time of the resonance frequency of the magnetic stimulator. Their methods were useful in predicting nerve membrane time constants.
Magnetic stimulation requires moving enough charge through an electrically sensitive nerve membrane to depolarize it, see, e.g. John Cadwell, “Optimizing Magnetic Stimulator Design”,
Magnetic Motor Stimulation: Basic Principles and Clinical Experience
, EEG Supplement 43, 1991, pp. 238-248; this means that the membrane voltage must be increased from its normal resting negative potential. Many authors have attempted to offer guidelines for producing energy efficient stimulation coils, as well in the modeling of these coils. See e.g., G. A. Mouchawar, J. A. Nyenhuis, J. D. Bourland, and L. A. Geddes, “Guidelines for energy efficient coils: coils designed for magnetic stimulation of the heart”,
Magnetic Motor Stimulation: Basic Principles and Clinical Experience
, EEG Supplement 43, 1991, pp. 255-267; C. W. Hess, K. M. Rosler, R. O. Heckmann, H. P. Ludin, “Magnetic Stimulation of the Human Brain: Influence of size and shape of the stimulating coil”,
Motor Disturbances II
, Academic Press Limited, London, U.K. 1990, pp. 31-42; A. Cantano, P. Noel, “Transcranial Magnetic Stimulation: Interest in the excitation threshold”, Acta Neurologica Belgica, vol. 97, 1997, p. 61; G. Cerri, R. Deleo, F. Moglie, A. Schiavoni, “An accurate 3-D model for magnetic stimulation of the brain cortex”,
Journal of Medical Engineering and Technology
, Vol. 1, 1995, pp. 7-16. Roth and Basser, B. J. Roth and P. J. Basser, “A model of the stimulation of a nerve fiber by electromagnetic induction”,
IEEE Transactions on Biomedical Engineering
, vol. 37, 1990, pp. 588-596, were among the first to actually model the stimulation of a single fiber by electromagnetic induction. However, there is still a substantial interest in the art for a method of nerve stimulation using optimal efficient parameters of the electrical charging circuit.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method for nerve stimulation wherein a coil design and its parameters are chosen from coupling analytically the electromagnetic circuit to that within the nerve.
Other objects, advantages and features of this invention will be more apparent hereinafter.
The present invention provides a method for nerve cell stimulation, comprising selecting an optimal frequency of a coupled magnetic circuit for construction of a magnetic nerve stimulator, selecting an optimal reluctance of a coupled magnetic circuit for construction of a magnetic nerve stimulator, selecting an optimal capacitance of a coupled magnetic circuit for construction of a magnetic nerve stimulator, and selecting an optimal winding resistance of a coupled magnetic circuit for construction of a magnetic nerve stimulator. In the preferred embodiment, the optimal frequency, optimal reluctance, optimal capacitance and/or the optimal winding resistance are selected to maximize stimulation of a peripheral nerve cell, or any other type of nerve cell, using the methods provided herein.


REFERENCES:
patent: 4940453 (1990-07-01), Cadwell
patent: 5350414 (1994-09-01), Kolen
patent: 5984854 (1999-11-01), Ishikawa et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnetic stimulation coil and circuit design does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnetic stimulation coil and circuit design, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic stimulation coil and circuit design will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3024986

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.