Liquid purification or separation – Magnetic
Reexamination Certificate
2000-07-10
2001-12-04
Reifsnyder, David A. (Department: 1723)
Liquid purification or separation
Magnetic
C210S396000, C210S400000, C209S218000, C209S226000, C198S690100
Reexamination Certificate
active
06325927
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to an apparatus used to clean an aqueous solution of unwanted particulate and more particularity relates to a magnetic separator apparatus used to clean an aqueous solution of unwanted magnetic particulate by using a conveyor chain with polypropylene bars having an unique configuration of barium ceramic magnets incorporated therein. This magnetic separator apparatus may be continuously run through the “dirty” solution. In particular, such an aqueous solution is used to clean car and truck bodies and other component parts prior to being immersed into zinc phosphate and zinc chromate baths used to coat the surfaces of these parts and assemblies.
There are many common methods and means used in the prior art to clean aqueous solutions of unwanted particulate. One traditional method is the insertion of magnetic rods directly into the aqueous solution. This type of cleansing or particulate-purging methodology, however, is flawed because of the necessity to frequently manually remove the rods having accumulated metal particulate deposited thereon. These rods must then be cleaned of unwanted particulate and then be inserted back into the aqueous solution. As can be appreciated by those skilled in the art, this cleaning methodology is time-consuming and labor-intensive. It will be understood that another flaw found in this prior art methodology is that the effectiveness of the magnets used to purge dirt and the like from the solution is greatly diminished as such magnetic dirt builds up on the rods.
Another type of methodology known in the art that is used to clean aqueous solutions of unwanted particulate is the passage through the solution of a stainless steel conveyor belt impregnated with magnets. This type of conveyor belt based cleaning, however, does not adequately and efficiently purge the aqueous solution of all unwanted particulate. That is, such a cleaning process is typically not efficient because the effectiveness of the magnets is drastically reduced by the total encasement of the magnets in the stainless steel conveyor belt. Accordingly, this type of design tends to reduce the strength of the magnetic fields emanating from the impregnated magnets.
For instance, in U.S. Pat. No. 4,055,497, Creps et al. teach a hold-down mechanism for scraper conveyor foruse in a settling tank having a flat bottom, an inclined side extending from an arcuate corner along side of bottom, and a drag-out conveyor means along bottom and up the inclined side. This mechanism is used for the removal of solids from liquids such as cuttings in coolants. Toshiro et al., in U.S. Pat. No. 4,370,228, disclose a magnetic belt conveyor for magnetic particle separation in a storage tank. A magnet is disposed beneath the forward run of the belt conveyor to extend in the direction of running thereof. In U.S. Pat. No. 3,834,542, Linsruth teaches a magnetic separator conveyor that uses a plurality of spaced magnets carried on an endless chain drive to magnetically clean a liquid solution from ferrous particulate. The prior art, has generally been unable to provide an apparatus having a effectively configured and sufficiently sustained magnetic field to enable magnetic particulate from being completely purged from dirty solutions.
Accordingly, these limitations and disadvantages of the prior art are overcome with the present invention, and improved means and techniques are provided which are useful for cleaning an aqueous solution of unwanted magnetic particulate and the like.
SUMMARY OF THE INVENTION
The present invention provides an improved magnetic separator apparatus which overcomes deficiencies in the prior magnetic separator art. As will be hereinafter described in detail, the present invention teaches a unique configuration of magnets impregnated into polypropylene bars. Under the present invention, barium ceramic magnets are embedded into polypropylene bars. The added strength of the barium ceramic and the unique configuration of the magnets optimize the field penetration and holding strength of the magnets.
It is an object of the present invention to provide an apparatus for continuously cleaning aqueous solutions containing unwanted magnetic particulate.
It is another object of the present invention to provide a magnetic separator apparatus for purging magnetic particulate from an aqueous solution.
It is still another object of the present invention to provide an apparatus for purging magnetic particulate materials from an aqueous solution without requiring human intervention to remove accumulated dirt from the magnetic separation means.
It is yet another object of the present invention to provide an apparatus for purging magnetic particulate materials from an aqueous solution while requiring only minimal maintenance attributable to accumulated dirt forming on the magnetic separation means.
It is an object of the present invention to provide a magnetic separation apparatus for cleaning magnetic particulate materials from an aqueous solution which engenders maximum reach of the magnetic field.
It is a specific object of the present invention to provide an apparatus for separating unwanted magnetic particulate from an aqueous solution, said apparatus comprising: a plurality of spaced-apart magnetic means disposed upon a conveyor belt means for attracting said magnetic particulate; each of said plurality of magnetic means constructed of polypropylene embedded with a like plurality of pairs of magnetic bars; said conveyor belt means disposed within said aqueous solution and configured for movement therethrough; and scraper means fixedly attached to said conveyor belt means for removing said particulate from said plurality of magnetic means for deposit into collection means.
It is another specific object of the present invention to provide an apparatus for separating unwanted magnetic particulate from an aqueous solution, said apparatus comprising: a plurality of uniformly spaced-apart magnetic means disposed upon a conveyor belt means disposed within said aqueous solution and configured for movement therethrough and for attracting said magnetic particulate; each of said plurality of magnetic means constructed of polypropylene embedded with a like plurality of pairs of magnetic bars with each of said pairs of magnetic bars having a first magnet means disposed abutably of a second magnet means with the outer surface of said first magnet means disposed abutably of first steel plate and the outer surface of said second magnet means disposed abutably of a second steel plate, with said first magnet means and said second magnet means sandwiched between said first and second steel plates, so that the South Pole of said first magnetic bar is aligned and contiguous with the South Pole of said second magnetic bar; and scraper means fixedly attached to said conveyor belt means for removing said particulate from said plurality of magnetic means for deposit into a collection means.
It is still another specific object of the present invention to provide an apparatus for separating unwanted magnetic particulate from an aqueous solution, said apparatus comprising: a plurality of uniformly spaced-apart magnetic means disposed upon a conveyor belt means disposed within said aqueous solution and configured for movement therethrough and for attracting said magnetic particulate; each of said plurality of magnetic means constructed of polypropylene embedded with a like plurality of pairs of magnetic bars with each of said pairs of magnetic bars having a first barium ceramic magnet means disposed abutably of a second barium ceramic magnet means with the outer surface of said first barium ceramic magnet means disposed abutably of first steel plate and the outer surface of said second barium ceramic magnet means disposed abutably of a second steel plate, with said first barium ceramic magnet means and said second barium ceramic magnet means sandwiched between said first and second steel plates, so that the South Pole of said first magnetic bar is aligned and contiguous
Harrison & Egbert
Reifsnyder David A.
LandOfFree
Magnetic separator apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Magnetic separator apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic separator apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2563207