Electricity: magnetically operated switches – magnets – and electr – Magnets and electromagnets – With magneto-mechanical motive device
Patent
1987-04-24
1988-06-14
Harris, George
Electricity: magnetically operated switches, magnets, and electr
Magnets and electromagnets
With magneto-mechanical motive device
310156, H01F 714
Patent
active
047514868
DESCRIPTION:
BRIEF SUMMARY
TECHNICAL FIELD
The present invention relates to a magnetic rotation apparatus in which a pair of rotors are rotated by utilizing a magnetic force.
BACKGROUND ART
An electromotor is well known as a rotation apparatus utilizing a magnetic force. For example, an AC electromotor comprises a rotor having a coil, a stator surrounding the rotor, and a plurality of electromagnets, disposed on the stator, for generating a rotating magnetic field. An electric power must be constantly supplied to the electromagnets in order to generate the rotating magnetic field and keep the rotor rotating, i.e., an external energy, or electric energy, is indispensable for the rotation of the rotor.
Under the circumstances, a magnetic rotation apparatus, which employs permanent magnets in lieu of electromagnets and can rotate a rotor only by a magnetic force of the permanent magnets, is highly desirable.
The present application proposes a magnetic rotation apparatus which comprises a pair of rotors rotatable in opposite directions in a cooperating manner, and a plurality of permanent magnets stationarily arranged at regular intervals on the peripheral portion of each rotor. One end portion of each permanent magnet of both rotors, which has the same polarity, is located radially outward of the rotors. When the two rotors are rotated in a cooperating fashion, a permanent magnet on one rotor and a corresponding permanent magnet on the other, which form a pair, approach and move away from each other periodically. In this case, the phase of rotation of the magnet on one rotor advances a little from that of the corresponding magnet on the other rotor. When the paired permanent magnets approach each other, magnetic repulsion causes one rotor to rotate. The rotation of one rotor is transmitted to the other rotor to rotate the same. In this manner, other pairs of magnets on both rotors sequentially approach each other, and magnetic repulsion occurs incessantly. As a result, the rotors continue to rotate.
In the above apparatus, in order to stop the rotation of the rotors, a brake device is required. If an ordinary brake device is mounted on the magnetic rotation apparatus, the entire structure of the apparatus becomes complex, and a driving source for the brake device must be provided separately.
The present invention has been developed in consideration of the above circumstances, and its object is to provide a magnetic rotation apparatus including a brake device for suitably stopping the rotation of rotors.
DISCLOSURE OF THE INVENTION
The magnetic rotation apparatus of the present invention is provided with magnetic force conversion means which is substituted for at least one pair of permanent magnets of the paired rotors. In a normal state, the magnetic force conversion means causes a magnetic repulsion, as in the other pairs of permanent magnets. When it is intended for the rotors to stop, the magnetic force conversion means causes a magnetic attraction force. Since a magnetic attraction force can be produced between the rotors at any time, the magnetic attraction force serves to stop the rotors. The brake device constituted by the magnetic force conversion means differs from an ordinary brake device which forcibly stops a pair or rotors by using a frictional force. In the brake device of this invention, by converting a magnetic repulsion force to a magnetic attraction force, the rotors can be braked in the state that the movement of the rotors is reduced. Thus, the rotors can be stopped effectively.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic perspective view showing a magnetic rotation apparatus according to an embodiment of the invention;
FIG. 2 is a schematic plan view showing the relationship between the first and second rotors;
FIG. 3 is a perspective view of a permanent magnet;
FIG. 4 shows an electromagnet, a permanent magnet cooperating with the electromagnet, and a driving circuit the electromagnet; and
FIG. 5 is a view for explaining how a pair of rotors rotate.
BEST MODE OF CARRYING OUT THE INVENTION
REFERENCES:
patent: 4628199 (1986-12-01), Mueller et al.
patent: 4647889 (1987-03-01), Addis
LandOfFree
Magnetic rotation apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Magnetic rotation apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic rotation apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-507248