Magnetic resonance imaging using hyperpolarized noble gases

Drug – bio-affecting and body treating compositions – In vivo diagnosis or in vivo testing – Magnetic imaging agent

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

424 937, 534 7, A61B 5055

Patent

active

061239194

ABSTRACT:
A method of imaging a spatial distribution of a noble gas by nuclear magnetic resonance spectrometry includes detecting a spatial distribution of at least one noble gas by NMR spectrometry and generating a representation of said spatial distribution of the noble gas. The noble gas is selected from noble gas isotopes having nuclear spin, preferably Xenon-129 and/or Helium-3. The noble gas is at least thermally or equilibrium polarized and is preferably hyperpolarized, most preferably hyperpolarized by optical (laser) pumping in the presence of an alkali metal or by metastability exchange. The generation of the representation of the noble gas spatial distribution includes at least one dimension, preferably 2 or 3 dimensions of the spatial distribution. The noble gas may be imaged according to the invention in chemical or biological systems, preferably in a human or animal subject or organ system or tissue thereof. Also, apparatus for nuclear magnetic resonance imaging of the spatial distribution of at least one noble gas includes means for imaging a noble gas by NMR spectrometry and means for providing and/or storing imageable quantities of a noble gas, preferably hyperpolarized Xenon-129 and/or Helium-3. Also, a medical composition includes a medically acceptable bifunctional gas effective for in vivo anesthesiological and NMR imaging functions, including at least one noble gas, preferably hyperpolarized Xenon-129 and/or Helium-3.

REFERENCES:
patent: 4466442 (1984-08-01), Hilmann et al.
patent: 4586511 (1986-05-01), Clark, Jr.
patent: 4775522 (1988-10-01), Clark, Jr.
patent: 4793357 (1988-12-01), Lindstrom
patent: 4862359 (1989-08-01), Trivedi et al.
patent: 4996041 (1991-02-01), Arai et al.
patent: 5046498 (1991-09-01), Fishman
patent: 5186924 (1993-02-01), Fishman
patent: 5352979 (1994-10-01), Conturo
patent: 5357959 (1994-10-01), Fishman et al.
patent: 5730954 (1998-03-01), Albayrak et al.
Wyrwicz, A.M. et al., Noninvasive Observations of Fluorinated Anesthetics in Rabbit Brain by Fluorine-19 Magnetic Resonance, Science 222:428 (1983).
Miller, K.W. et al., Proc. Natl. Acad. Sci. USA, 78:4946 (1981).
Evers, A.S. et al., Correlation between the anaesthetic effect of halothane and saturable binding in brain, Nature, 328:157 (1987).
Wyrwicz, A.M. et al., Multiple environments of fluorinated anesthetics in intact tissues observed with 19F NMR spectroscopy, FEBS Lett., 162:334 (1983).
Burt, C.T. et al., The Fluorinated Anesthetic Halothane as a Potential NMR Biologic Probe, Biochem. Biophys. Acta., 805:375 (1984).
Burt, C.T. et al., Fluorinated Anesthetics as Probes of Lipophilic Environments in Tumors, J. Magn. Reson., 53:163 (1983).
Lockhart, S.H. et al., Absence of Abundant Binding sites for Anesthetics in Rabbit Brain: An In Vivo NMR Study, Anesthesiology, 73:455 (1990).
Mason, J., in Multinuclear NMR, Mason, J., ed., pp. 606-607, Plenum Press, New York (1987).
Barany, M. et al., High Resolution Proton Magnetic Resonance Spectroscopy of Human Brain and Liver, Magn. Reson. Imaging, 5:393 (1987).
Fullerton, G.D. et al., Chapter 3 Relaxation of Biological Tissues, in Biomedical Magnetic Resonance Imaging: Principles, Methodology, and Applications, Wehrli, F.W. et al., eds., pp. 115-155, VCH Publishers, New York (1988).
Susskind, H. et al., Xenon-127 Ventilation Studies, Prog. Nucl. Med., 5:144 (1978).
Susskind, H. et al., Studies of Whole-Body Retention and Clearnance of Inhaled Noble Gases, Prog. Nucl. Med., 5:13 (1978).
Kendall, B.E. et al., Xenon as a contrast agent for computed tomography, J. Neuroradiology, 8:3 (1981).
Imai, A. et al., LCBF values decline while L.sub.-- values increase during normal human again measured by stable xenon-enhanced computed tomography, Neuroradiology, 30:463 (1988).
Yonas, H. et al., Determination of Irreversible Ischemia by Xenon-Enhanced Computed Tomographic Monitoring of Cerebral Blood flow in Patients with Synptomatic Vasospasm, Neurosurgery, 24:368 (1989).
Albert, M.S. et al., Abs., 11.sup.th Ann. Mtg. Soc. Magn. Reson. Med., 2104 (1992).
Albert, M.S. et al., Abs., 11.sup.th Ann. Mtg. Soc. Magn. Reson. Med., 4710 (1992).
Jameson, C.J. et al., Nuclear spin relaxation by intermolecular magnetic dipole coupling in the gas phase. 129Xe in oxygen, J. Chem. Phys., 89:4074 (1988).
Carver, T.R., Science, 141:599 (1963).
Happer, W. et al., Phys. Rev. A., 29:3092 (1984).
Wagshul, M.E. et al., Phys. Rev. A., 40:4447 (1989).
Wagshul, M.E., Thesis, Department of Physics, Harvard University (1991).
Grover, B.D., Phys. Rev. Lett., 40:391 (1978).
Schaefer, S.R. et al., Phys. Rev. A., 39:5613 (1989).
Schaefer, S.R. et al., Phys. Rev. A., 41:6063 (1990).
Schaefer, L.D., in Phys. Rev. A., 21:660 (1968).
Schaefer, L.D., in Phys. Rev. A., 188:505 (1969).
Schaefer, L.D., in Phys. Rev. A., 188:83 (1969).
Colegrove, F.D. et al., Phys. Rev., 132:2561 (1963).
Hadeishi, T. et al., Phys. Rev. Lett., 19:211 (1967).
Schearer, L.D., Phys. Lett., 28A:660 (1969).
Cates, G.D. et al., Phys. Rev. Lett., 65:2591 (1990).
Gatzke, M. et al., Extraordinarily Slow Nuclear Spin Relaxation in Frozen Laser-Polarized 129Xe, Phys. Rev. Lett., 70:690 (1993).
Bhaskar, N.D. et al., Phys. Rev. Lett., 49:25 (1982).
Cates, G.D. et al., Phys. Rev.A.., 45:4631 (1992).
Raftery, D. et al. Phys. Rev. Lett., 66:584 (1991).
Raftery, D. et al. Chem. Phys. Lett., 191:385 (1992).
Long, H.W. et al., J. Am. Chem. Soc., 115:8491 (1993).
Rinck et al., An Introduction to Magnetic Resonance in Medicine (1990).
Stark et al., eds., Magnetic Resonance Imaging, vol. 1, 2d ed. (1992) Chapters 1 and 2.
Hunt E.R. et al., Phys. Rev., 130:2302 (1963).
Tilton, Jr., R.F. et al, Biochemistry, 21:6850 (1982).
Diehl, P. et al., J. Magn. Reson., 88:669 (1990).
Cullen, S.C. et al., Science, 113:580 (1951).
Wilcock, R.J. et al., J. Chem. Thermodyn., 10:317 (1978).
Blumgart, H.L. et al., Studies on the Velocity of Blood Flow, J. Clin. Invest., 4:339-425 (1927).
Pollack, G.L. et al., Solubility of xenon in liquid n-alkanois: Thermodynamics functions in simple polar liquids, J. Chem. Phys., 81:3239 (1984).
Wisihnia, A., Biochemistry, 8:5064 (1969).
Bouchiat, M.A. et al., Phys. Rev. Lett., 5:373 (1960).
Zeng, X. et al., Phys. Rev. A., 31:260 (1985).
Laloe, F. et al., AIP Conf. Proc. #131 (Workshop on Polarized.sup.3 He Beams and Targets) (1984).
Ernst et al., Chapter 10, Nuclear Magnetic Resonance Imaging, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (1987).
Wehrli, F.W. et al., eds., Biomedical Magnetic Resonance Imaging (1988).
Schoenborn, B.P., Binding of Xenon to Horse Haemoglobin, Nature, 208:760 (1965).
Moschos, A. et al. J. Mag. Reson., 95:603 (1991).
Yonas, H. et al., Determination of Irreversible Ischemia by Xenon-Enchance Computed Tomographic Monitoring of Cerebral Blood Flow Patients with Symptomatic Vasospasm, Neurosurgery, 24:368 (1989).
Manabe, A. et al., Magn. Reson. In Med., 5:492-501 (1987).
Haase, A. et al., J. Magn. Reson., 67:217 (1986).
Look, D.C. et al., Rev. Sci. Instrum., 41:250-251 (1970).
Norberg, R. E., in Rare Gas Solids, eds. Hohler, G., Springer-Verlag, New York (1984).
Yen, W.M. et al., Nuclear Magnetic Resonance of Xe129 in Solid and Liquid Xenon, Phys. Rev., 131:269 (1963).
Kaplan, H.M. et al., in The Mouse in Biomedical Research, eds. Foster, H.L. et al., pp. 248-278, Academic Press, New York (1983).
Kanal, E. et al., Chapter 2 in Biomedical Magnetic Imaging, Wehrli, F.W. et al., eds., pp. 47-112, VCH Publishers, New York (1988).
Pollack, G.L. et al., Solubility of xenon in liquid n-alkanes: Temperature dependence and thermodynamic functions, J. Chem. Phys., 77:3221-3229 (1982).
Robillard, Jr., K.A. et al., Aromatic Hydrophobes and.sub.-- Lactoglobulin A. Thermodynamics of Binding, Biochemistry, 11:3835-3840 (1972).
Albert et al., Chem. Abstracts, 121:128933r (1994) from Nature 370 (6486):199-201 (1994).
Pfeffer, M., Chem. Abstracts, 121:174319 (1994).
Rinck et al., "NMR-Imaging Of Fluorine-Containing Substances 19-Fluorine Ventilation And Perfusion Studies!", vol. 140, No. 3, pp. 239-243 (Mar. 1984).
Neidl et al, Single photon emission tomography (SPECT): Hirnfunktionsdia

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnetic resonance imaging using hyperpolarized noble gases does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnetic resonance imaging using hyperpolarized noble gases, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic resonance imaging using hyperpolarized noble gases will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2097368

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.