Electricity: measuring and testing – Particle precession resonance – Using a nuclear resonance spectrometer system
Reexamination Certificate
2002-10-11
2004-07-06
Gutierrez, Diego (Department: 2859)
Electricity: measuring and testing
Particle precession resonance
Using a nuclear resonance spectrometer system
C324S307000
Reexamination Certificate
active
06759847
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to a method for magnetic resonance imaging with adherence to SAR (Specific Absorption Rate) limit values of the type, wherein a patient is subjected to a radio-frequency pulse sequence via at least one transmission antenna for the implementation of a measurement in a magnetic resonance tomography apparatus, and magnetic resonance signals that are produced are acquired in a spatially resolved manner via at least one reception antenna and further-processed for producing magnetic resonance images or spectra, with current SAR values being determined before the implementation of the measurement on the basis of patient data and the position of the patient relative to the transmission antenna for planned parameters of the measurement, and wherein the parameters are modified as warranted until the current SAR values lie within the SAR limit values.
2. Description of the Prior Art
Magnetic resonance tomography is a known technique for acquiring images of the inside of the body of an examination subject. For implementation of magnetic resonance tomography, a basic field magnet generates a static, relatively homogeneous basic magnetic field. Rapidly switched gradient fields for location coding that are generated by, gradient coils, are superimposed on this basic magnetic field during the exposure of magnetic resonance images. Sequences of radio-frequency pulses for triggering magnetic resonance signals are emitted into the examination subject with one or more radio-frequency transmission antennas. The magnetic resonance signals produced as a result of these radio-frequency pulses are received by radio-frequency reception antennas. Tomograms of the inside of the body of the patient are calculated and displayed on the basis of the magnetic resonance signals received from the field of view (FoV) under observation, possibly covering one or more body slices of the patient.
All body regions from the head to the foot can be measured in this way by displacement of the patient bed within the magnetic resonance tomography apparatus.
The slices generated in the measurement field can be arbitrarily oriented relative to the body axes by means of an appropriate a dexterous selection of the measurement parameters, particularly parallel to the longitudinal axis in the X-Z-plane and/or the Y-Z-plane, Z indicating the direction of the longitudinal body axis that is identical to the transport direction of the patient bed, and X and Y referencing the directions orthogonal thereto. For a patient borne lying on his/her back, coronal or sagittal tomograms of the human body are thus obtained.
An important requirement in modern magnetic resonance tomography is the capability for fast imaging. This demand results from economic considerations of being able to examine as many patients as possible within a given time interval and, as well as from specific medical questions wherein a fast imaging is required for the examination result. One example of this is the reduction of motion artifacts due to movement of the patient during the measurement.
The high repetition rate of the radio-frequency transmission pulses and transmission pulse sequences required for a fast imaging, however, leads to a higher stress on the patient from electromagnetic radiation, Due to legal regulations, limit values are prescribed for this SAR (SAR=Specific Absorption Rate) stress that cannot be exceeded in magnetic resonance imaging. Since modern magnetic resonance tomography systems are technically capable of stressing patients with significantly higher SAR values, arrangements referred to as SAR monitors must be utilized in order to assure adherence to the limit values in the measurement. In addition to whole-body SAR values, specific limit values also must be adhered to for various body regions, and a fundamental distinction must be made between whole-body, partial body and local exposures.
Japanese Application 03284241 discloses a method for magnetic resonance imaging, wherein a coarse magnetic resonance image is produced before the implementation of the measurement and the region of the patient exposed in the measurement is approximately identified therewith by fitting in a circular line. An analytical calculation of the SAR values can be implemented over the radius of this circular line, this being based on the approximation of a spherical, exposed patient volume. Although the calculation can be realized with a simple equation, it leads the relatively imprecise values due to the approximation. The parameters of the planned measurement are then modified as needed until the calculated SAR values lie within the SAR limit values. The actual measurement for the magnetic resonance imaging is subsequently implemented.
The SAR stress is dependent on the individual patient data and on the position of the patient relative to the transmission antenna, the type of transmission antenna, and the transmission power, which is essentially defined by the type of pulse sequence, the flip angle of the RF pulses employed, the repetition rate and the number of simultaneously acquired slices. Antennas referred to as whole-body resonators or body resonators that are very frequently utilized in magnetic resonance tomography systems and are usually short compared to the body size of an adult patient. These resonators usually effect only a partial body exposure, so that the position of the patient relative to the transmission antenna or antennas—given the simultaneous use of a plurality of transmission antennas—is very important for the calculation of the SAR values.
Conventionally, the SAR values are calculated before the implementation of the measurement from known patient data such as age, weight and body size and from an estimated position of the patient relative to the transmission antenna for planned parameters of the measurement, and the parameters are modified as needed in order to assure adherence to the SAR values. The parameters of the measurement are thereby usually summarized in a measurement protocol. The operator must position the patient on the patient bed according to a specific user rule, so that a specific position of the patient relative to the transmission antenna can be assumed within certain limits as the basis for the calculation. For safety reasons, however, a worst-case position of the patient must be assumed in the calculation.
Due to the uncertainties in the determination of the SAR values for a patient based on the planned measurement parameters, large tolerances must be employed in the calculation which prevent an optimum utilization of the parameters allowed for the measurement.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a method for magnetic resonance imaging with adherence to the SAR values that allows a better utilization of the compatibilities of the magnetic resonance tomography apparatus.
This object is achieved in accordance with the invention in a method of the type initially described wherein the position of the patient relative to the transmission antenna is exactly determined with an imaging magnetic resonance pre-measurement before the implementation of the actual measurement. On the basis of this exact position of the patient, the SAR values for planned parameters of the measurement are then calculated in a known way from known patient data and the exactly identified position of the patient relative to the transmission antenna. The parameters can be modified as warranted until the SAR values lie within the SAR limit values. Subsequently, the actual measurement for the magnetic resonance imaging of the region or regions of interest of the patient is implemented.
As a result of the exact knowledge of the position of the patient relative to the transmission antenna, the SAR stress applied locally in the measurement and averaged over the exposed regions can be very exactly determined. The measurement parameters such as, for example, the repetition rate, the number of measured slices or the type of
Brinker Gerhard
Renz Wolfgang
Gutierrez Diego
Schiff & Hardin LLP
Siemens Akiengesellschaft
Vargas Dixomara
LandOfFree
Magnetic resonance imaging method with adherence to SAR limits does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Magnetic resonance imaging method with adherence to SAR limits, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic resonance imaging method with adherence to SAR limits will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3238138