Magnetic resonance imaging coated assembly

Electricity: conductors and insulators – Anti-inductive structures – Conductor transposition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C333S012000

Reexamination Certificate

active

06765144

ABSTRACT:

FIELD OF THE INVENTION
An assembly for imaging an implanted medical device, wherein the medical device is shielded by nanomagnetic material which, in addition to shielding the medical device from high-frequency electromagnetic radiation, emits high frequency electromagnetic radiation.
BACKGROUND OF THE INVENTION
Magnetic resonance imaging (“MRI”) has been developed as an imaging technique adapted to obtain both images of anatomical features of human patients as well as some aspects of the functional activities and characteristics of biological tissue. These images have medical diagnostic value in determining the state of health of the tissue examined. Unlike the situation with fluoroscopic imaging, a patient undergoing magnetic resonance imaging procedure may remain in the active-imaging system for a significant amount of time, e.g. a half-hour or more, without suffering any adverse effects.
In an MRI process, a patient is typically aligned to place the portion of the patient's anatomy to be examined in the imaging volume of the MRI apparatus. Such an MRI apparatus typically comprises a primary magnet for supplying a constant magnetic field (B
0
) which, by convention, is along the z-axis and is substantially homogeneous over the imaging volume and secondary magnets that can provide linear magnetic field gradients along each of three principal Cartesian axes in space (generally x, y, and z, or x
1
, x
2
and x
3
, respectively). As is known to those skilled in the art, a magnetic field gradient (&Dgr;B
0
/&Dgr;x
i
) refers to the variation of the field with respect to each of the three principal Cartesian axes, x
i
. The MRI apparatus also comprises one or more RF (radio frequency) coils which provide excitation and detection of the MRI signal. Additionally, or alternatively, detection coils may be designed into the distal end of a catheter to be inserted into a patient. When such catheters are employed, their proximal ends are connected to the receiving signal input channel of the magnetic resonance imaging device. The detected signal is transmitted along the length of the catheter from the receiving antenna and/or receiving coil in the distal end to the MRI input channel connected at the proximal end. Other components of an MRI system are the programmable logic unit and the various software programs which the programmable logic unit executes. Construction of an image from the received signals is performed by the software of the MRI system.
The insertion of metallic wires into a biological organism (such as, e.g., catheters and guidewires) while the organism is in a magnetic resonance imaging environment poses potentially deadly hazards to the organism through excessive heating of the wires. In some studies, heating to a temperature in excess of 74 degrees Centigrade has created such hazards; see, e.g., an article by M. K. Konings, et al., in “Catheters and Guidewires in Interventional MRI: Problems and Solutions”, MEDICA MUNDI 45/1 March 2001.
The Konings et al. article lists three ways in which conductors may heat up in such environments: 1) eddy currents, 2) induction loops, and 3) resonating RF transverse electromagnetic (TEM) waves along the length of the conductors. It is disclosed in this article that: “Because of the risks associated with metal guidewires, and catheters with metal conductors, in the MRI environment, there is an urgent need for a non-metallic substitute, both for guidewires and for signal transfer.” The authors further propose the use of “ . . . a full-glass guidewire with a protective polymer coating . . . .”
However, the use of such “ . . . full glass guidewire . . . ” presents its own problems. Many medical devices (such as, e.g., guides wires, stents, etc.) require some degree of strength and flexibility that is not afforded by glass guide wires and that typically require the use of metal or metal alloys in the device. The implementation of glass guide wires, optical fibers, etc., solutions would require substantial retooling of the, for example, catheter manufacturing industry and is not a suitable solution for other medical instruments that a physician may wish to employ, e.g. guide wires, stents, etc, during a medical procedure within an MRI system.
Compositions adapted to assist in visualizing medical devices in magnetic resonance imaging are well known. Reference may be had, e.g., to U.S. Pat. No. 6,361,759, the entire disclosure of which is hereby incorporated by reference into this specification. This patent describes and claims: “A coating for visualizing medical devices in magnetic resonance imaging, comprising a complex of formula (II): P—X—J—L—M
n+
(II), wherein P is a polymer, X is a surface functional group selected from the group consisting of an amino group and a carboxyl group, L is a chelate, M is a paramagnetic ion, n is an integer that is 2 or greater and J is the linker or spacer molecule and J is a lactam.”
U.S. Pat. No. 4,731,239 discloses and claims: “A method for nuclear magnetic resonance (NMR) imaging of a patient comprising, prior to the NMR imaging of a patient, administering to said patient ferromagnetic, paramagnetic or diamagnetic particles effective to enhance an NMR image.”
U.S. Pat. No. 4,989,608 discloses and claims: “A device which is specifically useful during magnetic resonance imaging of body tissue comprising: a flexible member of resinous material adapted to be inserted in the body tissue, the flexible member having ferromagnetic particles embedded therein at a concentration of about 0.001% to about 10% by weight of the material wherein, under magnetic resonance imaging, the flexible member exhibits characteristics which differ substantially from characteristics of the body tissue so that the visibility of the flexible member under magnetic resonance imaging is substantially enhanced, resulting in the flexible member being distinguishable from adjacent tissue as a dark area in brighter tissues and as a bright area in darker tissues, said member being free of elements which tend to degrade the overall quality of magnetic resonance images of the body tissue.” At column 2 of this patent, it is disclosed that: “Ferromagnetic particles in general can cause magnetic field artifacts (MRI signal voids, with adjacent very bright signal bands, hereinafter called ‘imaging artifacts’ which are considerably larger than the size of the particle.” The entire disclosure of this patent is hereby incorporated by reference into this specification.
U.S. Pat. No. 5,154,179 discloses and claims: “1. A catheter which is specifically useful during a magnetic resonance imaging of body tissue comprising: a contrast agent; a flexible tubular member having a first lumen with an additional lumen positioned therein, the additional lumen retaining the contrast agent therein; the flexible tubular member being made of resinous material and adapted to be inserted in the body tissue, the flexible tubular member having ferromagnetic particles embedded therein at a concentration of about 0.001% to about 10% by weight of the material wherein, under magnetic resonance imaging, the flexible member exhibits characteristics which differ substantially from characteristics of the body tissue so that the visibility of the flexible member under magnetic resonance is substantially enhanced, resulting in the flexible member being distinguishable from adjacent tissue as a dark area in brighter tissues and as a bright area in darker tissues, said member being free of elements which tend to degrade the overall quality of magnetic images of the body tissue.” In the device of this patent, a ferromagnetic material was extruded into plastic as the plastic was being extruded to form the flexible tubular member. The entire disclosure of this United States patent is hereby incorporated by reference in to this specification.
U.S. Pat. No. 5,462,053 discloses and claims: “1. A contrast agent adapted for magnetic resonance imaging of a sample, said contrast agent comprising a suspension in a medium acceptable for magnetic resonance imaging of (a) coated pa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnetic resonance imaging coated assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnetic resonance imaging coated assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic resonance imaging coated assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3246127

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.