Magnetic recording medium with protective barrier layer

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Physical dimension specified

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S408000, C428S690000, C428S690000, C428S689000, C428S702000, C428S900000, C427S131000, C204S192150, C204S192160

Reexamination Certificate

active

06340521

ABSTRACT:

TECHNICAL FIELD
The present invention relates to magnetic recording media, particularly rotatable magnetoresistance (MR) or giant magnetoresistance (GMR) recording media, such as thin film magnetic disks cooperating with a magnetic transducer head. The present invention has particular applicability to high areal density magnetic recording media designed for drive programs having reduced flying height, or pseudo-contact/proximity recording.
BACKGROUND ART
Thin film magnetic recording disks and disk drives are conventionally employed for storing large amounts of data in magnetizable form. In operation, a typical contact start/stop (CSS) method commences when a data transducing head begins to slide against the surface of the disk as the disk begins to rotate. Upon reaching a predetermined high rotational speed, the head floats in air at a predetermined distance from the surface of the disk where it is maintained during reading and recording operations. Upon terminating operation of the disk drive, the head again begins to slide against the surface of the disk and eventually stops in contact with and pressing against the disk. Each time the head and disk assembly is driven, the sliding surface of the head repeats the cyclic operation consisting of stopping, sliding against the surface of the disk, floating in the air, sliding against the surface of the disk and stopping.
For optimum consistency and predictability, it is necessary to maintain each transducer head as close to its associated recording surface as possible, i.e., to minimize the flying height of the head. Accordingly, a smooth recording surface is preferred, as well as a smooth opposing surface of the associated transducer head. However, if the head surface and the recording surface are too smooth, the precision match of these surfaces gives rise to excessive stiction and friction during the start up and stopping phases, thereby causing wear to the head and recording surfaces, eventually leading to what is referred to as a “head crash.” Thus, there are competing goals of reduced head/disk friction and minimum transducer flying height.
Conventional practices for addressing these apparent competing objectives involve providing a magnetic disk with a roughened recording surface to reduce the head/disk friction by techniques generally referred to as “texturing.” Conventional texturing techniques involve mechanical polishing or laser texturing the surface of a disk substrate to provide a texture thereon prior to subsequent deposition of layers, such as an underlayer, a magnetic layer, a protective overcoat, and a lubricant topcoat, wherein the textured surface on the substrate is intended to be substantially replicated in the subsequently deposited layers. The surface of an underlayer can also be textured, and the texture substantially replicated in subsequently deposited layers.
Conventional longitudinal recording media typically comprise a substrate, such as aluminum (Al) or an Al alloy, e.g., aluminum-magnesium (Al—Mg) alloy, plated with a layer or amorphous nickel-phosphorus (NiP). Alternative substrates include glass, ceramic, glass-ceramic, and polymeric materials and graphite. The substrate typically contains sequentially deposited on each side thereof at least an underlayer, such as chromium (Cr) or a Cr alloy, e.g., chromium vanadium (CrV), a cobalt (Co)—based alloy magnetic layer, a protective overcoat typically containing carbon, and a lubricant. The underlayer, magnetic layer and protective overcoat, are typically sputter deposited in an apparatus containing sequential deposition chambers. A conventional Al-alloy substrate is provided with a NiP plating, primarily to increase the hardness of the Al substrate, serving as a suitable surface to provide a texture, which is substantially reproduced on the disk surface.
In accordance with conventional practices, a lubricant topcoat is uniformly applied over the protective overcoat to prevent wear between the disk and head interface during drive operation. Excessive wear of the protective overcoat increases friction between the head and disk, thereby causing catastrophic drive failure. Excess lubricant at the head-disk interface causes high stiction between the head and disk. If stiction is excessive, the drive cannot start and catastrophic failure occurs. Accordingly, the lubricant thickness must be optimized for stiction and friction.
A conventional material employed for the lubricant topcoat comprises a perfluro polyether (PFPE) which consists essentially of carbon, fluorine and oxygen atoms. The lubricant is typically dissolved in an organic solvent, applied and bonded to the carbon overcoat of the magnetic recording medium by techniques such as dipping, buffing, thermal treatment, ultraviolet (UV) irradiation and soaking. A significant factor in the performance of a lubricant topcoat is the bonded lube ratio which is the ratio of the amount of lubricant bonded directly to the carbon overcoat of the magnetic recording medium to the amount of lubricant bonded to itself or to a mobile lubricant. Desirably, the bonded lube ratio should be between 0.3 to 0.7 (e.g. about 0.5 (50%)) to realize a meaningful improvement in stiction and wear performance of the resulting magnetic recording medium.
The escalating requirements for high areal recording density impose increasingly greater requirements on thin film magnetic recording media in terms of coercivity, stiction, squareness, medium noise and narrow track recording performance. In addition, increasingly high areal recording density and large capacity magnetic disks require smaller flying heights, i.e., the distance by which the head floats above the surface of the disk in the CSS drive (head-disk interface). For conventional media design, a decrease in the head to media spacing increases stiction and drive crash, thereby imposing an indispensable role on the carbon-protective overcoat.
There are various types of carbon, some of which have been employed for a protective overcoat in manufacturing a magnetic recording medium. Such types of carbon include hydrogenated carbon, graphitic carbon or graphite, and nitrogenated carbon or carbon nitride and hydrogenated-nitrogenated carbon. These types of carbon are well known in the art and, hence, not set forth herein in great detail.
Generally, hydrogenated carbon or amorphous hydrogenated carbon has a hydrogen concentration of about 5 at. % to abut 40 at. %, typically about 20 at. % to about 30 at. %. Hydrogenated carbon has a lower conductivity due to the elimination of the carbon band-gap states by hydrogen. Hydrogenated carbon also provides effective corrosion protection to an underlying magnetic layer. Amorphous carbon nitride, sometimes referred to as nitrogenated carbon, generally has a nitrogen to hydrogen concentration ration of about 5:20 to about 30:0. Hydrogenated-nitrogenated carbon generally has a hydrogen to nitrogen concentration ration of about 30:10 to 20:10 (higher concentration of hydrogen than nitrogen). Amorphous (a) hydrogen-nitrogenated carbon can be represented by the formula a—CH,Ny, wherein “x” is about 0.05 (5.0 at. %) to about 0.20 (20 at. %), such as about 0.1 (10 at. %) to about 0.2 (20 at. %), and “y” about 0.03 (3.0 at. %) to about 0.30 (30 at. %), such as about 0.03 (3.0 at. %) to about 0.07 (7.0 at. %). A particularly suitable composition is a—CH
.15
N
.05
. Graphitic carbon or graphite contains substantially no hydrogen and nitrogen.
Patel et al., in U.S. Pat. No. 4,124,736, disclose a magnetic recording medium comprising a barrier layer, having a thickness of 0.5 to 10 micro-inches between a magnetic layer and protective oxide layer. Opfer et al., in U.S. Pat. Nos. 4,610,911 and 4,631,202, disclose a magnetic recording medium comprising a Cr barrier layer having a thickness of 100 Å to 600 Å between a magnetic layer and protective oxide coating. Hiwatashi, in U.S. Pat. Nos. 5,562,982 and 5,679,454, disclose a magnetic recording medium containing a Cr buffer layer, having a thickness of 100 Å to 200 Å, between a magne

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnetic recording medium with protective barrier layer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnetic recording medium with protective barrier layer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic recording medium with protective barrier layer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2816271

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.