Magnetic recording medium with a nialru seedlayer

Stock material or miscellaneous articles – Composite – Of inorganic material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S690000, C428S336000, C428S900000, C427S131000, C204S192200, C204S192120

Reexamination Certificate

active

06432562

ABSTRACT:

TECHNICAL FIELD
The present invention relates to magnetic recording media, such as thin film magnetic recording disks, and to a method of manufacturing the media. The invention has particular applicability to high areal density magnetic recording media exhibiting low noise, low signal modulation, high overwrite and narrow pulse width.
BACKGROUND ART
The increasing demands for higher areal recording density impose increasingly greater demands on thin film magnetic recording media in terms of remanent coercivity (Hr), magnetic remanance (Mr), coercivity squareness (S*), medium noise, i.e., signal-to-noise ratio (SNR), and narrow track recording performance. It is extremely difficult to produce a magnetic recording medium satisfying such demanding requirements.
The linear recording density can be increased by increasing the Hr of the magnetic recording medium while decreasing the medium noise, as by maintaining very fine magnetically non-coupled grains. Medium noise in thin films is a dominant factor restricting increased recording density of high density magnetic hard disk drives, and is attributed primarily to inhomogeneous grain size and intergranular exchange and magnetostatic couplings. Accordingly, in order to increase linear density, medium noise must be minimized by suitable microstructure control.
There are other basic characteristics of magnetic recording media, aside from SNR, which are indicative of recording performance, such as half-amplitude pulse width (PW
5
O), overwrite (OW), and modulation level. A wide PW
50
indicates that adjacent bits are crowded together resulting in interference which limits the linear packing density of bits in a given track and, hence, reduces packing density in a given area thereby eliminating the recording capacity of the magnetic recording medium. Accordingly, a narrow PW
5
O is desirable for high areal recording density.
OW is a measure of the ability of the magnetic recording medium to accommodate overwriting of existing data. In other words, OW is a measure of what remains of a first signal after a second signal, e.g., at a different frequency, has been written over it on the medium. OW is considered low or poor when a significant amount of the first signal remains.
It is extremely difficult to obtain optimum performance from a magnetic recording medium by optimizing each of the PW
50
, OW, SNR and modulation level, as these performance criteria are interrelated and tend to be offsetting. For example, if coercivity (Hc) is increased to obtain a narrower PW
50
, OW is typically adversely impacted, as increasing Hc typically degrades OW. A thinner medium having a lower Mr x thickness (Mrt) yields a narrower PW
50
and better OW; however, the medium signal is usually reduced as well, which might pose difficulty in recording system design since the fraction of electronic noise of the system increases. Increasing the squareness of the hysteresis loop contributes to a narrower PW
50
and better OW; however, noise may increase due to intergranular exchange coupling and magnetostatic interaction. Thus, a formidable challenge is present in optimizing magnetic performance in terms of PW
50
, OW, SNR and modulation level.
It is recognized that the magnetic properties, such as Hr, Mr, S* and SNR, which are critical to the performance of a magnetic alloy film, depend primarily upon the microstructure of the magnetic layer which, in turn, is influenced by the underlying layers, such as the underlayer. It is also recognized that underlayers having a fine grain structure are highly desirable, particularly for growing fine grains of hexagonal close packed (HCP) Co alloys deposited thereon.
It has been reported that nickel-aluminum (NiAl) films exhibit a grain size which is smaller than similarly deposited Cr films, which are the underlayer of choice in conventional magnetic recording media. Li-Lien Lee et al., “NiAl Underlayers For CoCrTa Magnetic Thin Films”, IEEE Transactions on Magnetics, Vol. 30, No. 6, pp. 3951-3953, 1994. Accordingly, NiAl thin films are potential candidates as underlayers for magnetic recording media for high density longitudinal magnetic recording. However, it was found that the coercivity of a magnetic recording medium comprising a NiAl underlayer is too low for high density recording, e.g. about 2,000 Oersteds (Oe). The use of a NiAl underlayer is also disclosed by C. A. Ross et al., “The Role Of NiAl Underlayers In Longitudinal Recording Media”, J. Appl. Phys. 81(a), P.4369, 1997.
In order to increase Hr, magnetic alloys containing platinum (Pt), such as Co—Cr—Pt—tantalum (Ta) alloys have been employed. Although Pt enhances film Hr, it was found that Pt also increases media noise. Accordingly, it has become increasingly difficult to achieve high areal recording density while simultaneously achieving high SNR and high Hr.
In U.S. Pat. No. 6,010,795, issued to Chen et al., a magnetic recording medium is disclosed comprising a surface oxidized seed layer, e.g. NiP, and sequentially deposited thereon a Cr-containing sub-underlayer, a NiAl or iron aluminum (FeAl) sub-underlayer, a Cr-containing intermediate layer and a magnetic layer.
Kitakami et al., in U.S. Pat. No. 5,543,221, disclose a magnetic recording medium comprising a non-magnetic intermediate layer interposed between a recording layer and a soft magnetic layer, which intermediate layer can contain ruthenium or an alloy, oxide or nitride thereof. Shiroishi et al., in U.S. Pat. No. 4,833,020, disclose a magnetic recording medium comprising a composite underlayer which contain ruthenium and aluminum. Honda et al., in U.S. Pat. No. 4,722,869, disclose a magnetic recording medium containing a columnar crystal grain size control layer on the substrate which can contain ruthenium. Asada et al., in U.S. Pat. No. 4,743,491, disclose a perpendicular magnetic recording medium comprising an electrically conductive underlayer which can contain ruthenium and aluminum. Japanese Patent No. J'63187-416-A discloses a magnetic recording medium comprising a composite underlayer, containing a lower layer and an upper layer which can contain ruthenium.
There exists a need for high areal density magnetic recording media exhibiting high magnetic properties and high SNR. There also exists a need for magnetic recording media exhibiting a narrow PW
50
, high OW, high SNR and low signal modulation.
DISCLOSURE OF THE INVENTION
An advantage of the present invention is a magnetic recording medium for high areal recording density exhibiting a narrow PW
50
, high OW, high SNR and low signal modulation.
Another advantage of the present invention is a method of manufacturing a magnetic recording medium suitable for high areal recording density and exhibiting a narrow PW
50
, high OW, high SNR and low signal modulation.
Additional advantages and features of the present invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following only to be learned from the practice of the present invention. The advantages of the present invention maybe realized and obtained as particularly pointed out in the appended claims.
According to the present invention, the foregoing and other advantages are achieved by a magnetic recording medium comprising a non-magnetic substrate; a nickel-aluminum-ruthenium (NiAlRu) alloy seedlayer on the substrate; an underlayer on the seedlayer; and a magnetic layer on the underlayer.
Another aspect of the present invention is a method of manufacturing a magnetic recording medium, the method comprising sputter depositing a nickel-aluminum-ruthenium (NiAlRu) alloy seedlayer on a non-magnetic substrate; depositing an underlayer containing chromium or a chromium alloy on the seedlayer; and depositing a cobalt alloy magnetic layer on the underlayer.
Embodiments of the present invention include sputter depositing a NiAlRu alloy seedlayer on a non-magnetic substrate, such as an aluminum-magnesium substrate, or a glass or glass ceramic substrate, depositing chromium or a c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnetic recording medium with a nialru seedlayer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnetic recording medium with a nialru seedlayer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic recording medium with a nialru seedlayer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2911121

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.