Magnetic recording medium, process for producing the same,...

Stock material or miscellaneous articles – Composite – Of inorganic material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S687000, C065S061000, C360S135000

Reexamination Certificate

active

06821653

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a magnetic recording medium used in an apparatus such as a magnetic disk apparatus; a process for producing the magnetic recording medium; and a magnetic recording and reproducing apparatus. More particularly, the present invention relates to a magnetic recording medium exhibiting excellent read-write conversion characteristics.
BACKGROUND OF THE INVENTION
Recently, recording density of hard disk apparatuses, which are a type of magnetic recording and reproducing apparatus, has been increasing by 60% per year, and this trend is expected to continue in the future. Therefore, a magnetic recording head and a magnetic recording medium which are suitable for realization of high recording density have been developed.
A magnetic recording medium used in a hard disk apparatus or the like basically includes a structure as described below. On a substrate containing an Al alloy coated with Ni-P through plating or on a glass substrate, a non-magnetic undercoat layer for determining crystal orientation of a Co alloy layer is formed from Cr or a Cr alloy such as CrW or CrMo through sputtering among other methods. A thin film of Co alloy, serving as a magnetic layer, is formed on the non-magnetic undercoat layer. In addition, a protective film predominantly containing carbon is formed on the magnetic layer, and a lubricant such as perfluoropolyether is applied onto the protective film to form a lubrication film.
In accordance with an increase in recording density of an apparatus such as a magnetic disk apparatus, there has been demand for a magnetic recording medium exhibiting excellent read-write conversion characteristics. Such medium exhibits magnetic anisotropy in a circumferential direction. Therefore, a magnetic recording medium including an aluminum alloy substrate coated with an NiP film through plating (hereinafter the substrate may be referred to as an “aluminum substrate”) is provided with magnetic anisotropy in a circumferential direction by forming grooves mechanically on the NiP film in a circumferential direction (hereinafter the procedure will be referred to as “mechanical texturing”).
Non-magnetic substrates, for example, glass substrates have been used in magnetic recording media, because glass substrates exhibit rigidity, excellent impact resistance, and evenness. Thus, glass substrates are applicable to an increase in recording density of magnetic disk apparatuses, in which the flying height of a magnetic head is reduced. However, mechanical texturing cannot be satisfactorily carried out on a glass substrate, and thus glass substrates have been used mainly in magnetic recording media exhibiting magnetic isotropy. Even when glass substrates are subjected to texturing, satisfactory magnetic anisotropy is not obtained, and thus glass substrates have been used mainly in magnetic recording media exhibiting magnetic isotropy.
In order to solve such problems, studies have been performed on techniques for imparting magnetic anisotropy to a magnetic recording medium including a glass substrate. For example, Japanese Patent Application Laid-Open (kokai) Nos. 4-29561 and 9-167337 disclose formation of a hard film on a non-metallic substrate, which can be subjected to texturing. Japanese Patent Application Laid-Open (kokai) No. 5-197941 discloses a hard film formed through sputtering, and subjected to texturing. Japanese Patent Application Laid-Open (kokai) Nos. 4-29561 and 9-167337 disclose formation of a hard film on a non-metallic substrate, which can be subjected to texturing. However, in each of the magnetic recording media disclosed in these publications, a hard film is formed through electroless plating. Consequently, the production process for the medium includes complicated steps, resulting in high production costs. Japanese Patent Application Laid-Open (kokai) No. 5-197941 discloses an NiP hard film formed through sputtering. However, after the NiP hard film is formed through sputtering, the film must be subjected to mechanical texturing. Consequently, the production process for the magnetic recording medium disclosed in this publication includes complicated steps, resulting in high production costs. Therefore, there has been a strong demand for a production process for a magnetic anisotropic medium in which, even when a non-metallic substrate is employed, the medium is produced through a simple production process at low cost, similar to the case in which an aluminum substrate is employed.
SUMMARY OF THE INVENTION
In view of the foregoing, an object of the present invention is to provide an inexpensive magnetic recording medium exhibiting excellent read-write conversion characteristics, which includes a non-metallic substrate. The present inventors have performed extensive studies on the relation between the surface form of a magnetic recording medium and read-write characteristics of the medium suitable for realization of high recording density. The following embodiments of the present invention has been accomplished on the basis of these studies.
1) A first embodiment for solving the aforementioned problems provides a magnetic recording medium comprising a non-metallic substrate including, on its surface, texture grooves having a line density of 7,500 lines/mm or more; an orientation-determining film; a non-magnetic undercoat layer; and a magnetic layer, the film and the layers being formed on the substrate.
2) A second embodiment for solving the aforementioned problems is drawn to a specific embodiment of the magnetic recording medium according to 1), wherein the line density of the texture grooves is 15,000 lines/mm or more.
3) A third embodiment for solving the aforementioned problems is drawn to a specific embodiment of the magnetic recording medium according to 1), wherein the line density of the texture grooves is 20,000 lines/mm or more.
4) A fourth embodiment for solving the aforementioned problems is drawn to a specific embodiment of the magnetic recording medium according to any one of 1) through 3), wherein the Young's modulus of the non-metallic substrate is 70-90 GPa.
5) A fifth embodiment for solving the aforementioned problems is drawn to a specific embodiment of the magnetic recording medium according to any one of 1) through 4), wherein the micro-waviness (Wa) of the surface of the non-metallic substrate is 0.3 nm or less.
6) A sixth embodiment for solving the aforementioned problems is drawn to a specific embodiment of the magnetic recording medium according to any one of 1) through 5), wherein the arithmetic average roughness (Ra) of at least one of a cutout portion and a side edge portion constituting a chamfer section at an end portion of the non-metallic substrate is 10 nm or less.
7) A seventh embodiment for solving the aforementioned problems is drawn to a specific embodiment of the magnetic recording medium according to any one of 1) through 6), wherein the non-metallic substrate is a glass substrate.
8) An eighth embodiment for solving the aforementioned problems is drawn to a specific embodiment of the magnetic recording medium according to 7), wherein the glass substrate comprises glass ceramic.
9) A ninth embodiment for solving the aforementioned problems is drawn to a specific embodiment of the magnetic recording medium according to 8), wherein the mean size of crystal grains contained in the glass ceramic is 10-100 nm.
10) A tenth embodiment for solving the aforementioned problems is drawn to a specific embodiment of the magnetic recording medium according to 8) or 9), wherein the density of crystal grains contained in the glass ceramic is 30-5,000 grains/&mgr;m
2
at the surface of the substrate.
11) An eleventh embodiment for solving the aforementioned problems is drawn to a specific embodiment of the magnetic recording medium according to any one of 1) through 10), wherein the orientation-determining film comprises any one selected from among a Cr alloy, NiB, NiP, and NIPZ (wherein Z is one or more elements selected from among Cr, Mo, Si, Mn, W, Nb, Ti, and Zr).
12) A twelfth e

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnetic recording medium, process for producing the same,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnetic recording medium, process for producing the same,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic recording medium, process for producing the same,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3323405

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.