Dynamic magnetic information storage or retrieval – Fluid bearing head support – Disk record
Patent
1998-11-19
2000-09-19
Cao, Allen T.
Dynamic magnetic information storage or retrieval
Fluid bearing head support
Disk record
G11B 1732
Patent
active
061221481
DESCRIPTION:
BRIEF SUMMARY
TECHNICAL FIELD
This invention relates to a magnetic recording unit used as an external recording unit for a computer or the like, and more particularly to a magnetic head slider which is suitable for enhancing the sliding durability of a recording-reproducing element portion and a slider, having this element portion mounted thereon, and also is suitable for enhancing the recording density.
BACKGROUND ART
As disclosed in Japanese Patent Unexamined Publication No. 2-103714, in a conventional magnetic head slider, a recording-reproducing element portion has an alumina film which is formed as a base film for forming and holding magnetic poles, a coil, a magneto-resistance effect element and so on, or as a protective film which is effective in an element-forming process so that the magnetic poles, the coil, the magneto-resistance effect element and so on will not be damaged during process steps and during handling. As described in the above publication, this alumina film can be relatively easily worn and damaged upon sliding contact with a medium. Therefore, in the above conventional example, the area of exposure of this alumina film to the sliding surface is kept to a minimum so as to reduce the probability of sliding contact of this alumina film with the medium. Therefore, this alumina film does not function as a sliding protective film for sliding contact with the medium, but functions as the base film, which is part of the element-forming members, or as the protective film effective in the element-forming process.
Recently, the frequency of contact between a slider and a medium increases with a reduced flying height of the slider and also with the practical use of a contact-recording system in which a slider is always held in contact with the medium, and besides with the practical use of magneto-resistance effect elements having poor sliding durability, the enhancement of the sliding durability can not be expected even if the area of the process protective film is reduced as in the above conventional example, and there has been encountered a problem that the element portion travel surface is worn and damaged.
Therefore, a sliding protective film, constituted by a multi-layer film made of silicon, carbon and so on, has been formed on a slider travel surface, a flying rail surface and an element portion travel surface (hereinafter, the surfaces in this direction will be referred to as "travel surface") so as to protect these surfaces from sliding contact.
In order to achieve a high-density recording design of a magnetic disk unit, it is necessary to make the distance (this distance will hereinafter be referred to as "magnetic spacing") between the element portion travel surface and a magnetic layer of the medium very narrow. This sliding protective film is a loss for the narrowing of the magnetic spacing, and therefore the thickness of this sliding protective film has heretofore been not more than several tens of nm. However, as described above, the frequency of contact between the slider and the medium increases, and there has been encountered a problem that the sliding protective film, having the above thickness, is insufficient in durability.
Therefore, as disclosed in Japanese Patent Unexamined Publication Nos. 7-6340, 8-45022 and 8-45045, a film with a smaller thickness, made of a material having better durability, such as diamond-like carbon (DLC), has been used as a sliding protective film, but even such a material as DLC is insufficient in durability for the contact-recording system.
Generally, a sliding protective film, made of a material such as DLC, is formed or coated by a film-forming method called sputtering or CVD. In these film-forming methods, the density and durability of the formed film are enhanced in proportion to the thickness of the formed film. Particularly, in the formation of a diamond film which is the most durable, the film must undergo crystal growth, and therefore with the currently-available techniques, the practical film, having a thickness of not more than 1 .mu.m, can no
REFERENCES:
patent: 5473486 (1995-12-01), Nepala et al.
patent: 5986851 (1999-11-01), Angelo et al.
Arisaka Toshihiro
Hamaguchi Tetsuya
Shimizu Toshihiko
Watanabe Keiko
Yoshida Shinobu
Cao Allen T.
Hitachi , Ltd.
LandOfFree
Magnetic head slider and method of production thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Magnetic head slider and method of production thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic head slider and method of production thereof will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1079580