Dynamic magnetic information storage or retrieval – Fluid bearing head support – Disk record
Reexamination Certificate
1999-03-08
2001-06-19
Klimowicz, William (Department: 2652)
Dynamic magnetic information storage or retrieval
Fluid bearing head support
Disk record
C360S294400
Reexamination Certificate
active
06249402
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a magnetic head slider used for a magnetic disc unit.
In recent years, a strong demand for increasing the density of magnetic recording has arisen. Therefore, the magnetic disc unit has been made compact, its performance has been highly enhanced, and its cost has been reduced. In accordance with the recent tendency, it is desired to develop a thin film magnetic head of high performance and low cost. In order to meet the demand, a horizontal magnetic head, in which a thin film pattern forming surface is arranged in parallel with an air bearing surface, has been proposed. The reason is described as follows. In the case of a horizontal magnetic head, it is easy to form flying rails having specific shapes. Therefore, it is possible to realize a magnetic head capable of flying stably close to the disc surface, and further it is easy to reduce a portion to be machined in the manufacturing process, and furthermore the horizontal magnetic head can be easily handled and the cost can be lowered.
2. Description of the Related Art
For the above reasons, there is proposed a magnetic head slider capable of being manufactured in a manufacturing process in which machining is seldom conducted. This magnetic head slider is disclosed in Japanese Unexamined Patent Publication No. 9-81924, the tile of which is “Thin film magnetic head slider and electrostatic actuator thereof” which discloses a magnetic head slider on which a horizontal head element is mounted. After flying rails and thin film head elements have been formed on a substrate via a sacrificial layer, a conductor to be used as a terminal connecting section is formed by means of plating and, at the same time, a slider body is formed by a conductor.
Another prior art is disclosed in Japanese Unexamined Patent Publication No. 4-265584. According to the above patent publication, in order to accurately control a position of a magnetic head element on a recording track, a plurality of sliding sections surrounding the magnetic head element are fixed to a head support via piezoelectric elements which can be extended and contracted in the vertical direction and used for controlling the posture of the magnetic head and the magnetic head elements are fixed to the head support via a support section.
Japanese Unexamined Patent Publication No. 6-314479 discloses a magnetic head slider, which is composed as follows. An angle formed between a straight line connecting a magnetic or geometrical center of a reading head with that of a writing head and a tangent of a track at the head position is made constant in the entire seek range, so that both a yaw angle of the reading head and that of the writing head are made constant to provide a magnetic disk unit of high reliability. The position of the dual head is detected by a position detecting means. According to a result of the detection, a yaw angle adjusting means is driven, and the angle formed between the straight line connecting the magnetic or geometrical center of the reading head with that of the writing head and the tangent of the track at the head position is made constant. Due to the foregoing, both the yaw angle of the reading head and that of the writing head are made constant in the entire seek range.
According to Japanese Unexamined Patent Publication No. 8-180623, in order to enhance the positioning accuracy of a magnetic head in a magnetic disc unit so as to increase the density of recording, at a forward end portion of a load arm, there are provided a rotary spring for supporting a rotating slider and an inching drive means for moving the slider in the track direction relative to the load arm.
In the magnetic head slider described in the above Japanese Unexamined Patent Publication No. 9-81924, information recorded on a medium is read and written by a head element provided on this slider. In this case, the head element is composed of MR head exclusively used for reading and an inductive head used for writing. These MR head and inductive head are laminated in this order.
When MR head and the inductive head line up in a straight line on the track of the medium in the case of reading and writing, the track density must be a maximum. However, in an actual reading and writing operation, an actuator is rotated round the center of a spindle located outside of the medium from the inside to the outside in the effective range of the disc-shaped medium. Therefore, in the major part of the track, MR head and the inductive head are shifted from a straight line parallel to the track. A value of cos &thgr; makes a contribution to the reading and writing of a signal, wherein &thgr; is an angle formed between a straight line connecting MR head with the inductive head and a tangent which represents a direction of the track. Therefore, in the case where &thgr;=0 is not satisfied, the signal intensity is lowered. For the above reasons, it is impossible to increase the density of the track to the maximum.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a magnetic head slider in which a rotating mechanism is provided in a portion of the above magnetic head slider and the head element is rotated by the rotating mechanism so that MR head and the inductive head can line up in a straight line on the track of the medium.
According to the present invention, there is provided a magnetic head slider adapted to be opposed to a recording medium comprising: a slider film body provided on a surface of a substrate or on a surface of a sacrificial layer provided on a substrate, the substrate or the sacrificial layer and substrate being separate from the slider film body; a rotating mechanism supported by a stationary section of the slider body so that a movable section of the rotating mechanism which is a portion of the slider body can be rotated in a plane substantially in parallel to a surface of the recording medium, and at least an opposed magnetic pole of a magnetic head element adapted to be opposed to the recording medium, provided in a movable section of the rotating mechanism.
In the present invention, a portion of the slider film body, that is, a movable portion of the slider film body can be rotated by a minute angle with respect to a stationary portion. Therefore, the direction of the opposing magnetic poles of the magnetic head element can be made constant with respect to the direction of the track of the recording medium at all times. For example, it is possible to keep the straight line connecting the MR head with the inductive head to coincide with the direction of the track at all times. Accordingly, it is possible to accomplish the object of increasing the track density of a recording medium.
The movable section may be supported by the stationary section via at least one support spring, the head slider further comprising a drive-force-generating section for driving the movable section with respect to the stationary section against an elastic force of the support spring, by an electrostatic attraction force acting between the opposed surfaces of the movable and the stationary sections when a voltage is applied between opposed surfaces.
In this connection, the drive-force-generating section may comprise a stationary section having a plurality of teeth parallel to each other, a movable section having a plurality of teeth parallel to the teeth of the stationary section, said support spring for supporting the movable section so that the movable section can be moved with respect to the stationary section in a tooth width direction, and said drive-force generating section for moving the movable section to a position at which an electrostatic attraction force in the tooth width direction generated when a voltage is applied between the teeth of the stationary section and those of the movable section, is balanced with said elastic force of the support spring.
Due to the above arrangement, when the voltage to be impressed is determined in accordance with a yaw angle formed between the straight
Fujitsu Limited
Greer Burns & Crain Ltd.
Klimowicz William
LandOfFree
Magnetic head slider does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Magnetic head slider, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic head slider will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2458075