Dynamic information storage or retrieval – Detail of optical slider per se
Reexamination Certificate
2001-04-19
2003-09-30
Miller, Brian E. (Department: 2652)
Dynamic information storage or retrieval
Detail of optical slider per se
C360S125330, C360S123090
Reexamination Certificate
active
06628604
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
The invention relates to magnetic head for use in a magneto-optical device, which magnetic head includes an at least substantially flat magnetic coil having a central opening, which coil has coil layers which extend at least substantially parallel to each other, each of the coil layers having at least one electrically conductive turn which extends around the central opening.
2. Related Art
Such a magnetic head is known from WO-A 98/48418. The known magnetic head includes a flat magnetic coil having two parallel substantially equiform coil sections, each coil section comprising a plurality of turns formed by means of a thin-film technology. The magnetic coil extends in a magnetic yoke which, with the coil, defines a central passageway for an optical beam. The known magnetic head is intended for use in a magneto-optical (MO) system for the storage of data in a magneto-optical medium. During the recording or read-out of data the magnetic head is situated at a short distance from the magneto-optical medium. The magneto-optical system comprises said magnetic head, a laser source and optical elements, which include a focusing lens, enabling a laser beam to be routed to a recording layer via the central passageway. During the storage of data a laser beam is utilized for reducing the coercivity of the recording layer of the magneto-optical medium in that selected spots are heated to approximately the Curie temperature of the recording layer. Meanwhile, the magnetic coil is activated to generate a time-varying magnetic field traversing the recording layer in order to define a pattern of magnetic domains. During the read-out of stored information the MO medium is scanned with a laser beam, use being made of the magneto-optical Kerr effect, which is known per se.
During the magneto-optical storage of information the minimum width of the stored data bits is dictated by the diffraction limit, i.e. the numerical aperture (NA) of the focusing lens used and the wavelength of the laser beam. A reduction of said width is generally based on shorter-wavelength lasers and higher-NA optical focusing systems. During magneto-optical recording the minimum bit length can be reduced to below the optical diffraction limit by using Laser Pulsed Magnetic Field Modulation. In this process the bit transitions are determined by the speed of reversal of the magnetic field and the temperature gradient induced by switching of the laser source. In order to obtain small bit lengths and high data rates magnetic coils are required which meet specific requirements such as a low self-inductance, a low capacitance and a low resistance. These requirements cannot be met by means of conventionally wound coils. Therefore, use is now made of coils manufactured by means of a multi-layer technique, particularly a thin-film technique.
A magnetic coil suitable for high data rate magneto-optical recording should have a good high-frequency behavior. This means that such a coil should have a satisfactorily low self-inductance, a low capacitance and a low resistance, while the power dissipation should be of an acceptable level. Thus, it is true that an increase of the number of turns of a given coil configuration may lead to a reduction of the current required to generate a certain magnetic field, since the power dissipation is proportional to the square of the current and is only proportional to the resistance, but an increase of the number of turns also leads to an increase of the self-inductance and thereby limits the data rate.
The coil configuration used in the known magnetic head does not provide a solution to the problem outlined above.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a magnetic head which is suitable for use in a magneto-optical device for information storage at a high speed, for example 100 Mbit/s, and which for this reason includes a magnetic coil which can be used at high switching frequencies and which has an acceptably low power dissipation for its envisaged use.
This object is achieved with the magnetic head according to the invention, which magnetic head includes an at least substantially flat magnetic coil having a central opening, which coil has coil layers which extend at least substantially parallel to each other, each of the coil layers having at least one electrically conductive turn which extends around the central opening, wherein at least one of the coil layers has turns, of which the turns situated nearer the central opening have smaller widths than the turns situated farther away from the central opening, at least one of the coil layers having an outermost turn situated nearer the central opening than the outermost turn of one of the other coil layers. The central opening of the magnetic coil can serve as a passage for a laser beam. The central opening, which is defined by inner turns, may actually be an opening or it may be a transparent central area formed by a material that differs from the coil material, particularly a transparent material, such as Al
2
O
3
, SiO
2
, Si
3
N
4
. The turns may be formed from metals such as Cu, Au, Al. In the magnetic head in accordance with the invention the magnetic coil has a turns density which decreases outwardly from the central opening, which has a favorable effect on the power dissipation of the coil, while the coil layers have mutually different dimensions, which keeps the capacitance within bounds. For an adequate magneto-optical recording it is important that the magnetic coil is capable of generating a magnetic field of the order of 200 Oe (16 kA/m) in and near the central opening. Since the turns which are situated nearer the central opening are most effective in generating the magnetic field, they provide a significant contribution to the generation of the magnetic field in and in the vicinity of the central opening. As a result of a low self-inductance and a low capacitance the magnetic head in accordance with the invention exhibits a good high-frequency behavior. This is corroborated by experiments. The magnetic head is suitable for use in MO devices for information storage with a very high density, for example 100 Gbit/in
2
. Another important effect of the measures in accordance with the invention is that a comparatively large central opening can be used. A comparatively large central opening may be desired if the magnetic head is used in a slider of a magneto-optical device, in which an optical system has been provided and in which a part of the optical system has a mechanically non-rigid connection to the slider. Furthermore, a large central opening may be desirable for the purpose of tracking, for which the position of a laser beam relative to the central opening is varied. The magnetic head in accordance with the invention can be used not only for information recording but also for information reading.
In order to limit the thickness of the magnetic coil the number of coil layers in the magnetic head will be limited to 2 or 3.
Claim
2
defines a practical embodiment of the magnetic head in accordance with the invention.
An embodiment of the magnetic head in accordance with the invention is characterized in that the decrease of the widths of the turns towards the central opening varies uniformly. In the case of a circular magnetic coil the distance between the turns of a coil layer is preferably maintained constant for technological reasons and is preferably minimized in order to guarantee a high efficiency of the coil. Here, efficiency is to be understood to mean the strength of the magnetic field generated at a given power. The width of a turn is preferably proportional to the n-th power of the distance to the central axis of the magnetic coil, which axis extends through the central opening, where 0.7≦n≦2.
An embodiment of the magnetic head in accordance with the invention is characterized in that the one outermost turn is situated substantially nearer the central opening than the other outermost turn. The number of turns of the one coil layer can be substant
Penning Frank Cornelis
Van Kesteren Hans Willem
Belk Michael E.
Koninklijke Philips Electronics , N.V.
Miller Brian E.
LandOfFree
Magnetic head having a magnetic coil does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Magnetic head having a magnetic coil, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic head having a magnetic coil will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3106546