Compositions – Magnetic – Iron-oxygen compound containing
Reexamination Certificate
2000-09-13
2002-12-17
Koslow, C. Melissa (Department: 1755)
Compositions
Magnetic
Iron-oxygen compound containing
C252S062610, C252S062560, C252S062620, C252S062640
Reexamination Certificate
active
06495059
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a ferrite composition and a process of production thereof.
2. Description of the Related Art
Mn—Zn ferrite components, Ni—Cu—Zn ferrite components, Mn—Mg—Zn ferrite components, and other magnetic ferrite compositions are made broad use of for various types of electronic apparatuses as for example magnetic cores for coils, transformers, magnetic heads, etc.
Along with the recent reduction in size and reduction in thickness of electronic apparatuses, a similar reduction in size and reduction in thickness of the magnetic ferrite components have become desirable. In order to maintain the reliability of the product along with this, a higher mechanical strength and higher magnetic characteristics are demanded.
From this viewpoint, to improve the mechanical strength, there are known the methods of using a hot press for manufacture, reducing the particle diameter of the raw material powder and lowering the sintering temperature to reduce the crystal particle diameter, or adding various types of additives to reduce the crystal particle diameter. Further, to improve the magnetic characteristics, there are known the methods of adding various types of additives and optimizing the sintering conditions.
With the method of using a hot press to improve the mechanical strength, however, the production time becomes longer and expensive equipment is required, so there are large cost demerits.
Further, with the method of making the raw material powder finer to improve the mechanical strength, a separate process for reducing the particle diameter becomes necessary. Also, the finer raw material powder is extremely difficult to handle when producing a magnetic ferrite component.
Further, with the method of improving the mechanical characteristics by adding various types of additives, there are large cost demerits and balancing the various magnetic characteristics becomes difficult in some cases.
Still further, with the method of improving the magnetic characteristics by optimizing the sintering conditions, control of the sintering atmosphere, temperature raising and lowering rate, etc. becomes difficult, introduction of new equipment becomes necessary in some cases, and other problems arise.
Note that Japanese Unexamined Patent Publication (Kokai) No. 1994-132111 discloses the amount of carbon contained in a ferrite sintered body, but makes no mention at all of the control of the same. Further, the actually included amount of carbon is normally about the same extent as the amount of carbon included in a sintered body obtained by removing the binder and then sintering (about 100 ppm) and it is difficult to secure sufficient mechanical strength. That is, in the above publication, the raw material powder is compacted by cold isostatic pressing and sintered in the state with difficult release of oxygen when the hematite material changes to spinel type ferrite. Therefore, the carbon added to the raw material powder before sintering or the reducing agent breaking down under heating to become carbon has an effect on the magnetic characteristics of the phase after sintering. Further, the above publication makes no mention at all of the effect of the residual carbon on the strength and magnetic characteristics.
SUMMARY OF THE INVENTION
An object of the present invention is to solve the above problems in the related art and provide a ferrite composition having a high mechanical strength and superior magnetic characteristics even when reducing the size and reducing the thickness and a process for production of the same.
The present inventors took note of the content of carbon in a magnetic ferrite composition and controlled the same to thereby perfect the present invention. Note that in the present invention, a “magnetic ferrite composition” is used in the sense including both a ferrite material and ferrite sintered body.
The magnetic ferrite composition according to the present invention is characterized by including at least one of Mg, Ni, Cu, Zn, Mn, and Li and having a content of carbon of less than 96 weight ppm, preferably not more than 91 weight ppm, more preferably not more than 77 weight ppm, particularly preferably not more than 70 weight ppm.
The ferrite composition preferably includes, in addition to Mg, at least one of Cu, Zn, Mn, Ni, and Li. A typical example of this ferrite composition is Mg-Cu—Zn ferrite. In such a ferrite composition, the content of the carbon is preferably over 9.7 weight ppm (more than 9.7 weight ppm), more preferably at least 10 weight ppm, particularly preferably at least 15 weight ppm. Further, in such a ferrite composition, the content of carbon is preferably not more than 91 weight ppm.
The ferrite composition may be a ferrite composition including at least Mn and Zn. A typical example of such a ferrite composition is an Mn—Zn ferrite composition. In such a ferrite composition, the content of carbon is less than 52 weight ppm, preferably not more than 50 weight ppm, more preferably not more than 45 weight ppm. Further, in such a ferrite composition, the content of carbon is preferably over 9.8 weight ppm (more than 9.8 weight ppm), more preferably at least 10 weight ppm, particularly preferably at least 15 weight ppm.
The ferrite composition may further include as an additional component at least one oxide selected from silicon oxide, calcium oxide, tin oxide, titanium oxide, niobium oxide, zirconium oxide, vanadium oxide, molybdenum oxide, bismuth oxide, and tantalum oxide.
Further, the ferrite composition may be a ferrite composition including at least one of Cu, Zn, and Mn in addition to Ni. A typical example of such a ferrite composition is an Ni—Cu—Zn ferrite composition. In such a ferrite composition, the content of carbon is less than 67 weight ppm, preferably not more than 60 weight ppm, more preferably not more than 50 weight ppm, particularly preferably not more than 45 weight ppm. Further, in such a ferrite composition, the content of carbon is preferably over 9.7 weight ppm (more than 9.7 weight ppm), more preferably at least 10 weight ppm, particularly preferably at least 15 weight ppm.
The process of production of a magnetic ferrite composition according to the present invention controls a flow rate of gas blown into the sintering furnace so as to control the amount of carbon contained in the ferrite composition.
Further, the method of adjusting the bending strength of the magnetic ferrite composition according to the present invention controls the content of the carbon contained in the magnetic ferrite composition.
In the present invention, by controlling the content of the carbon in the magnetic ferrite composition, it is possible to improve the mechanical strength of the magnetic ferrite composition (for example, to give a bending strength of preferably at least 8 kgf/mm
2
, more preferably at least 10 kgf/mm
2
) and to provide a highly reliable ferrite composition with little cracking or chipping.
In the present invention, by controlling the content of the carbon in the magnetic ferrite composition to within a predetermined range, it is possible to improve the bending strength while maintaining a high magnetic permeability &mgr; in a magnetic ferrite composition of a predetermined composition. Further, in a magnetic ferrite composition of another composition, it is possible to improve the bending strength while maintaining a low core loss.
Note that the carbon contained in the ferrite composition after sintering is considered to be the carbon component contained in the carbonate material and/or organic binder.
The ferrite composition according to the present invention may be used as the core of an inductor, transformer, coil, etc. used in an electronic apparatus such as a radio, television, communications apparatus, office automation apparatus, and switching power source or a magnetic head core used in an electronic apparatus such as a video apparatus or magnetic disk drive or other electronic components.
Among these, the Mg—Cu—Zn ferrite composition and Ni—Cu—Zn fe
Aoki Takuya
Nomura Takeshi
Koslow C. Melissa
TDK Corporation
LandOfFree
Magnetic ferrite composition and process of production thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Magnetic ferrite composition and process of production thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic ferrite composition and process of production thereof will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2987812