Magnetic disk drive with a floating head slider having...

Dynamic magnetic information storage or retrieval – Record transport with head stationary during transducing – Disk record

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S235800, C360S236300, C360S236600, C360S237000

Reexamination Certificate

active

06246538

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a magnetic recording drive, a head slider of the magnetic recording drive, a manufacturing method of the head slider, and more particularly to a head slider operated according to a contact start stop (CSS) method, a magnetic recording drive in which the head slider can float over a surface of a magnetic recording medium, and a manufacturing method of the head slider.
2. Description of the Prior Art
In a magnetic disk apparatus, a flying head operated according to a contact start stop (CSS) method is adopted. In the CSS method, a magnetic head makes contact with a surface of a magnetic disk when the magnetic disk apparatus is not in operation. A head slider of the magnetic head is lifted up from the magnetic disk surface when the magnetic disk drive is in operation. Therefore, the head slider of the magnetic head slides over the magnetic disk surface when the disk stands and stops. In this case, a read-write magnetic head device is attached to the slider.
The head slider of the magnetic head flies over the magnetic disk surface due to an air flow on the magnetic disk surface generated by the rotation of the magnetic disk. The head slider flies according to a principle of a dynamic air pressure bearing at the magnetic disk surface.
To make the head slider fly, a convex portion, in which a floating force is generated by the air flow, is formed on a surface of the head slider facing the magnetic disk, and an air inflow region of the convex portion for the air flow is formed in a taper shape. The convex portion is generally called a rail surface (or a flying surface). The rail surface of the head slider makes contact with the magnetic disk surface before starting the operation of the magnetic disk or after stopping the operation of the magnetic disk. Therefore, to prevent wear and/or damage of the magnetic disk surface, a protective film made of a hard material such as carbon or the like is formed on a recording layer of the magnetic disk. In addition, a lubricant layer is formed on the protective film to reduce friction and wear of the protective film. Therefore, the durability of the protective film is improved.
Also, as the magnetic disk drive is downsized and information is recorded in a higher recording density in the recording disk, a flying height (or a space) between the magnetic head and the magnetic disk is intended to be lowered. To lower the flying height, it is required to suppress the roughness of the magnetic disk surface as small as possible to prevent an undesirable contact of the magnetic head set in a flying condition with the magnetic disk.
However, when the magnetic disk is rest in a stop condition, a contact area of the magnetic disk with the head slider becomes larger as the magnetic disk surface becomes smooth. Therefore, stiction (or adhesion) of the head slider to the magnetic disk easily occurs, and a strength of the stiction increases. Because of the increase of the strength of the stiction, a load required to start rotating the magnetic disk increases. In this case, because a torque of a spindle motor for rotating the magnetic disk is decreased as the magnetic disk apparatus are downsized, there is a case that the magnetic disk cannot be rotated because of the weakness of the torque. Also, the suspension for supporting the head slider, is easily damaged and broken when the rotation of the magnetic disk is started.
To suppress the stiction, an idea that a head slider flying surface facing the magnetic disk is crown-processed along its longitudinal direction and decrease a contact area of the head slider with the magnetic disk is proposed. However, though the head slider formed in a crown shape is effective to prevent the stiction, it is difficult to form a large number of head sliders in the crown shape with the tight accuracy for mass production. Also, because the head slider is crown-processed along its longitudinal direction, a distance between a magnetic transducer arranged on an air outflow end side of the convex portion and the magnetic disk surface becomes larger than that between the rail surface and the magnetic disk surface. Therefore, there is a drawback that a spacing loss occurs.
Also, to suppress the stiction, an idea that projections are provided on rail surfaces (or an air bearing surface) of the head slider facing the magnetic disk to decrease a contact area of the magnetic disk with the head slider is, for example, disclosed in the Published Unexamined Japanese Patent Application (PUJPA) No.S51-71117.
Recently, the flying height is equal to or less than 100 nm. Therefore, it is difficult to precisely adjust a height of the projection by controlling an etching time required to etch the rail surface, and there is a drawback that a yield rate of the projection is lowered. Also, it is required to accurately adjust the height of the projection to improve a stable operation of the magnetic disk apparatus when the flying of the head slider is started or stopped.
The whole weight of the head slider loads onto projections having small surfaces. This causes large friction of the projection surfaces on the disk surface. As a result, the projections wear out rapidly.
Also, even though a plurality of projections are provided on the head slider, when the number of projections is decreased to reduce the contact area, a contact pressure at the contact area of the projections is increased, and there is a case that the lubricant layer of the magnetic disk is worn away. As a result, a solid-to-solid contact area is increased, and the surfaces of the projections and the magnetic disk are worn because of friction between the projections and the magnetic disk. Also, the stiction between the projections and the magnetic disk is increased, and the reliability for operating the head slider is lowered.
SUMMARY OF THE INVENTION
The first objective of the present invention is to provide a head slider in which the stiction to a magnetic disk is small and the wearing of projections is reduced. In order to achieve this objective, it is efficient to make the head slider compact and to reduce the magnitude of a load applied to the head slider.
Also, the second object of the present invention is to provide a head slider which is stably operated when a flying operation is started or stopped and is manufactured at a high yield rate. Also, the second object is to provide a magnetic recording drive utilizing the head slider and a manufacturing method of the head slider.
Also, the third object of the present invention is to provide a magnetic recording drive in which the stiction of a head slider to the recording disk is lowered and the breakage of a lubricant layer of the recording disk is prevented, Also, the third object is to provide a manufacturing method of the head slider.
The first object is also achieved by providing a head slider for a magnetic recording drive, comprising: a substrate for holding a transducer, information being read or written from/in a recording disk by the transducer; a pair of rail planes, arranged on both end sides of a surface of the substrate facing the recording disk, for receiving a floating force caused by a rotation of the recording disk; and a pair of projection elements arranged on the rail planes to set a first distance between each of the projection elements and the recording disk to a value longer than a second distance between an air outflow end of the substrate facing the recording disk and the recording disk on condition that the rail planes receives the floating force and the substrate flies over the recording disk.
In the above configuration, a pair of projection elements are arranged on the rail planes on condition that the first distance between each of the projection elements and the recording disk is longer than the second distance between an air outflow end of the substrate facing the recording disk and the recording disk when the substrate flies over the recording disk. Therefore, there is no probability that the projection el

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnetic disk drive with a floating head slider having... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnetic disk drive with a floating head slider having..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic disk drive with a floating head slider having... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2499543

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.