Magnetic bearing apparatus having a protective non-magnetic can

Electrical generator or motor structure – Dynamoelectric – Rotary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06570285

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a magnetic bearing apparatus wherein a can made of a non-magnetic material is disposed between a rotor and a stator, and the rotor is supported in a levitational manner by a magnetic force of an electromagnet provided on a stator-side member.
2. Description of the Related Art
In a magnetic bearing apparatus used in a special atmosphere, e.g., a corrosive gas atmosphere, a can made of a non-magnetic material is disposed between a rotor and a stator to protect, from the corrosive gas, an electromagnet of a magnetic bearing, sensors for detecting a displacement and rotation of the rotor and a motor stator for applying a rotational magnetic force to the rotor, which are provided on a stator-side member.
In processing systems which handle various processing gases, the inner surface of the stator is sealed by providing a can between a rotor and a stator as stated above, thereby preventing the processing gas from being contaminated with particles, an organic gas, etc., emitted from the stator side elements.
However, the provision of a non-magnetic can between the rotor and the stator involves some problems. That is, the magnetic gap between the rotor and the stator increases correspondingly. Consequently, the magnetic reluctance increases, and the control magnetic force for levitating the rotor decreases unfavorably. Further, it is necessary in order to obtain a large control magnetic force to increase the ampere-turns of electromagnet coils, i.e., the magnetomotive force of the electromagnet. This causes the electromagnet to increase in size unfavorably.
In a case where an inductance type sensor is used as a displacement sensor or a rotation sensor, the provision of a non-magnetic can between a sensor yoke and a rotor target causes the magnetic gap between the sensor yoke and the rotor target to increase by an amount corresponding to the wall thickness of the can. Consequently, the magnetic reluctance increases, and the sensor sensitivity decreases unfavorably. In order to improve the sensor sensitivity, it is necessary to increase the ampere-turns of the detection coils. This causes the sensor to increase in size undesirably.
Further, the provision of a non-magnetic can between the rotor and the motor stator for applying rotational force to the rotor causes the magnetic gap between the stator and the rotor to increase by an amount corresponding to the wall thickness of the can. Consequently, the magnetic rotational force decreases unfavorably. In order to increase the magnetic rotational force, it is necessary to increase the ampere-turns of the stator coils. This causes the motor to increase in size undesirably. In addition, the efficiency of the motor is decreased.
SUMMARY OF THE INVENTION
In view of the above-described circumstances, an object of the present invention is to provide a magnetic bearing apparatus which is free from a decrease in sensor sensitivity, a decrease in the control magnetic force for levitating or decrease in the magnetic rotational force of the motor stator even when a can made of a non-magnetic material is disposed between the stator and the rotor, and which allows downsizing of a sensor and an electromagnet provided in a magnetic bearing, and a motor.
According to a first aspect thereof, the present invention is applied to a magnetic bearing apparatus wherein a can made of a non-magnetic material is disposed between a rotor and a stator so as to cover the surface of the stator, and the rotor is supported in a levitational manner by a magnetic force generated by an electromagnet provided on a stator-side member. In addition, a yoke of the electromagnet is disposed to extend through the can, or a magnetic member is buried in a portion of the can which the yoke of the electromagnet faces, so that the yoke faces a target for magnetic levitation on the rotor directly or through the magnetic member in a non-contact manner.
In the above arrangement, because the yoke of the electromagnet is disposed to extend through the can or a magnetic member is buried in a portion of the can which the yoke of the electromagnet faces as stated above, the magnetic gap between the yoke and the rotor side target decreases correspondingly, and hence the magnetic reluctance reduces. Therefore, it becomes possible to reduce the size of the electromagnet.
According to a second aspect thereof, the present invention is applied to a magnetic bearing apparatus wherein a can made of a non-magnetic material is disposed between a rotor and a stator so as to cover the surface of the stator, and the rotor is supported in a levitational manner by a magnetic force of an electromagnet provided on a stator-side member, and further a displacement of the rotor is detected with a displacement sensor provided on the stator-side member. In addition, at least a yoke of the displacement sensor is disposed to extend through the can, or a magnetic member is buried in a portion of the can which the yoke of the displacement sensor faces, so that the yoke faces a target for detecting displacement on the rotor directly or through the magnetic member in a non-contact manner.
In the arrangement stated above, because the yoke of the displacement sensor is disposed to extend through the can or a magnetic member is buried in a portion of the can which the yoke of the displacement sensor faces as stated above, the magnetic gap between the yoke and the rotor side target decreases correspondingly, and hence the magnetic reluctance decreases. Therefore, it becomes possible to reduce the size of the displacement sensor. In addition, it becomes possible to improve the detection sensitivity.
According to a third aspect thereof, the present invention is applied to a magnetic bearing apparatus wherein a can made of a non-magnetic material is disposed between a rotor and a stator so as to cover the surface of the stator, and the rotor is supported in a levitational manner by a magnetic force from an electromagnet provided on a stator-side member, and further rotation of the rotor is detected with a rotation sensor provided on the stator-side member. In addition, at least a yoke of the rotation sensor is disposed to extend through the can, or a magnetic member is buried in a portion of the can which the yoke of the rotation sensor faces, so that the yoke faces a target for detecting rotation on the rotor directly or through the magnetic member in a non-contact manner.
In this arrangement, because the yoke of the rotation sensor is disposed to extend through the can or a magnetic member is buried in a portion of the can which the yoke of the rotation sensor faces as stated above, the magnetic gap between the yoke and the rotor side target decreases correspondingly, and hence the magnetic reluctance decreases. Therefore, it becomes possible to reduce the size of the rotation sensor. In addition, it becomes possible to improve the detection sensitivity.
According to a fourth aspect thereof, the present invention is applied to a magnetic bearing apparatus wherein a can made of a non-magnetic material is disposed between a rotor and a stator so as to cover the surface of the stator, and the rotor is supported in a levitational manner by a magnetic force generated by an electromagnet provided on a stator-side member, and further the rotor is rotated by a magnetic force from a motor stator provided on the stator-side member. In addition, at least a yoke of the motor stator is disposed to extend through the can, or a magnetic member is buried in a portion of the can which the yoke of the motor stator faces, so that the yoke faces the motor rotor directly or through the magnetic member in a non-contact manner.
In this arrangement, because the yoke of the motor stator is disposed to extend through the can or a magnetic member is buried in a portion of the can which the yoke of the motor stator faces as stated above, the magnetic gap between the yoke and the motor rotor decreases correspondingly, and hence the magnetic reluctance decreases. Theref

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnetic bearing apparatus having a protective non-magnetic can does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnetic bearing apparatus having a protective non-magnetic can, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic bearing apparatus having a protective non-magnetic can will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3075961

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.