Magnet configuration for head-level microactuator

Dynamic magnetic information storage or retrieval – Head mounting – For adjusting head position

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06268984

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a head-level microactuator having improved efficiency and improved ease of manufacture. More particularly, it relates to a magnetic microactuator located between a suspension and a slider in a disc drive system to selectively move a transducing head radially with respect to a rotatable disc.
The density of concentric data tracks on magnetic discs continues to increase (that is, the size of data tracks and radial spacing between data tracks are decreasing), requiring more precise radial positioning of the head. Conventionally, head positioning is accomplished by operating an actuator arm with a large-scale actuation motor, such as a voice coil motor, to radially position a head at the end of the actuator arm. The large-scale motor lacks a sufficient resolution to effectively accommodate high track-density discs. Thus, a high resolution head positioning mechanism, or microactuator, is necessary to accommodate the more densely spaced tracks.
One promising approach for high resolution head positioning involves employing a high resolution microactuator in addition to the conventional lower resolution actuator motor, thereby effecting head positioning through dual-stage actuation. Various microactuation designs have been considered to accomplish high resolution head positioning. One design involves inserting a silicon-based thin film structure between the suspension and the slider in a disc drive assembly. A major technical challenge in implementing such a microactuator is to provide sufficiently large actuation force to overcome friction forces and spring bias forces to drive the head at a speed high enough to accommodate the required bandwidth. Such a design must be realized in a relatively small wafer area, to keep costs reasonable and to allow easy integration into the disc drive design.
There is a need in the art for a microactuator design providing large actuation force with reasonable power consumption and within a reasonable wafer area to microposition a transducing head at a speed that accommodates the high bandwidth required by high performance disc drives and can be manufactured cost effectively.
BRIEF SUMMARY OF THE INVENTION
The present invention is a dual-stage actuation assembly for positioning a slider carrying a transducing head in a disc drive system with respect to a selected radial track of a rotatable disc. The dual-stage actuation assembly includes a movable actuator arm controlled by an actuator motor and a suspension assembly, including a flexure, supported by the actuator arm. The assembly includes a microactuator having a stator attached to the flexure and a rotor attached to the slider. The rotor is transversely movable with respect to the stator and a horizontal plane generally parallel to the surface of the disc. The assembly contains a magnetic circuit arranged vertically in a plurality of horizontal planes configured to effect motion of the rotor with respect to the stator.


REFERENCES:
patent: 3678482 (1972-07-01), Billawala
patent: 3924268 (1975-12-01), McIntosh et al.
patent: 4374402 (1983-02-01), Blessom et al.
patent: 4605977 (1986-08-01), Matthews
patent: 4620251 (1986-10-01), Gitzendanner
patent: 4651242 (1987-03-01), Hirano et al.
patent: 4764829 (1988-08-01), Makino
patent: 4853810 (1989-08-01), Pohl et al.
patent: 4914725 (1990-04-01), Belser et al.
patent: 5021906 (1991-06-01), Chang et al.
patent: 5034828 (1991-07-01), Ananth et al.
patent: 5065268 (1991-11-01), Hagen
patent: 5079659 (1992-01-01), Hagen
patent: 5105408 (1992-04-01), Lee et al.
patent: 5177652 (1993-01-01), Yamaguchi et al.
patent: 5189578 (1993-02-01), Mori et al.
patent: 5255016 (1993-10-01), Usui et al.
patent: 5276573 (1994-01-01), Harada et al.
patent: 5303105 (1994-04-01), Jorgenson
patent: 5521778 (1996-05-01), Boutaghou
patent: 5552809 (1996-09-01), Hosono et al.
patent: 5623461 (1997-04-01), Sohmuta
patent: 5657188 (1997-08-01), Jurgenson et al.
patent: 5745319 (1998-04-01), Takekado et al.
patent: 5764444 (1998-06-01), Imamura et al.
patent: 5781381 (1998-07-01), Koganezawa et al.
patent: 5793571 (1998-08-01), Jurgenson et al.
patent: 5796558 (1998-08-01), Hanrahan et al.
patent: 5805382 (1998-09-01), Lee et al.
patent: 5867347 (1999-02-01), Knight et al.
patent: 5896246 (1999-04-01), Budde et al.
patent: 5898541 (1999-04-01), Boutaghou et al.
patent: 5898544 (1999-04-01), Krinke et al.
patent: 5936805 (2000-08-01), Imaino
patent: 6043957 (2000-03-01), Hattori et al.
patent: 6064550 (2000-05-01), Koganezawa
patent: 0 412 221 B1 (1989-11-01), None
patent: 63-122069 (1988-05-01), None
patent: 02-263369 (1989-04-01), None
patent: 04-134681 (1992-05-01), None
patent: 04-368676 (1992-12-01), None
patent: 05-094682 (1993-04-01), None
patent: 06-020412 (1994-01-01), None
patent: 07-085621 (1995-03-01), None
“Silicon Micromachined Electromagnetic Microactuators for Rigid Disk Drives” by Tang et al,IEEE Transactions on Magnetics, vol. 31, No. 6, Nov. 1995.
“Magnetic Recording Head Positioning at Very High Track Densities Using a Microactuator-Based, Two-Stage Servo System” by Fan et al.,IEEE Transactions on Industrial Electronics, vol. 42, No. 3, Jun. 1995.
“A Flexural Piggyback Milli-Actuator for Over 5 Gbit/in2Density Magnetic Recording” by Koganezawa et al,IEEE Transactions on Magnetics, vol. 32, No. 5, Sep. 1996.
“Transverse Mode Electrostatic Microactuator for MEMS-Based HDD Slider” by Imamura et al,IEEE1996, MicroElectromech. Sys, MEMS '96 proceedings p. 216-221.
“An Experiment for Head Positioning System Using Submicron Track-width GMR Head” by Yoshikawa et al.,IEEE Transactions on Magnetics, vol. 32, No. 5, Sep. 1996.
“Micro Electrostatic Actuators in Dual-Stage Disk Drives with High Track Density” by Tang et al.,IEEE Transactions on Magnetics, vol. 32, No. 5, Sep. 1996, p. 3851-3853.
“Piezoelectric Microactuator Compensating for Off-Track Errors in Magnetic Disk Drives” by Imamura et al,Advance Information Storage Systems, vol. 5, pp 119-125.
“A Dual-Stage Magnetic Disk Drive Actuator Using a Piezoelectric Device for a High Track Density” by Mori et al.,IEEE Transactions on Magnetics, vol. 27, No. 6, Nov. 1991, p. 5298-5300.
“Dynamic Loading Criteria for 3-1/2 Inch Inline HDD Using Multilayer Piezoelectric Load/Unload Mechanism” by Kajitani et al.,IEEE Transactions on Magnetics, vol. 27, No. 6, Nov. 1991.
“Design, Fabrication, and Testing of Silicon Microgimbals for Super-Compact Rigid Disk Drives” by Temesvary et al.,Journal of Microelectromechanical Systems, vol. 4, No. 1, p. 18-27, Mar. 1995.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnet configuration for head-level microactuator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnet configuration for head-level microactuator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnet configuration for head-level microactuator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2535102

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.