Macromolecular conjugate made using unsaturated aldehydes

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving virus or bacteriophage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S007900, C435S007910, C435S007920, C435S007930, C435S007940, C435S007950, C435S972000, C436S531000, C436S536000, C530S402000, C530S403000, C536S104000

Reexamination Certificate

active

06326136

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to macromolecular conjugates, such as nucleic acid hybridization probes and immunological probes, useful as research and diagnostic tools. More particularly, it relates to making macromolecular conjugates by employing a universal conjugating agent.
Probe technology is emerging as a powerful tool in diagnostic testing, detection of genetic defects and the mapping of prokaryotic and eukaryotic genomes. Nucleic acids are characteristic of and therefore may be used to indicate the presence of a particular genus or species of bacteria or type of virus. They may indicate the presence of genes for pathogenicity or for antibiotic resistance or for a particular genetic disease.
Nucleic acid hybridization probes are well known tools of molecular biology. Grunstein et al.,
Proc. Natl. Acad. Sci. USA
72:3961 (1975) and Southern,
J. Mol. Biol.
98:503 (1975), describe hybridization techniques using radiolabeled nucleic acid probes.
Diagnostic tests based on culture techniques are often difficult and slow to produce results. Many pathogens, including viruses and bacteria, require incubation from overnight to six weeks to yield diagnostic results. In addition, some organisms cannot be cultured.
Monoclonal antibody techniques often have limited specificity. They are subject to undesirable cross reactions and the inability to detect antigenic variants. Nucleic acid hybridization probes have the advantages over other methods of speed and high specificity. However, existing hybridization techniques which utilize radioisotopes introduce additional expenses in disposal of radioactive waste products and monitoring personnel and the work place for contamination. Autoradiographic detection may require up to two weeks of exposure. These techniques are not suited to commercial areas such as clinical diagnosis.
One technique under development to overcome the drawbacks inherent in radioisotopic probes is the non-radioactive labeling of nucleic acids. Any labeling group that does not prevent hybridization of the nucleic acid with its target may be used to form a probe. After hybridization with a target nucleic acid, the labeled duplex is reacted with additional reagents to provide a signal. The most common method of indirect labeling is to attach biotin, a small vitamin, to the nucleic acid, using chemical or enzymatic techniques. Following hybridization, the biotin is detected with avidin, an egg white protein. Avidin may be labeled with an enzyme or a fluorochrome. Enzyme labels are detected by a calorimetric reaction. Fluorochrome labels are detected by illumination with light of a specific wavelength.
The ability of biotin to bind to avidin has been exploited in hybridization assays. U.S. Pat. No.4,581,333 to Kourilsky, et al., for example, discloses the use of avidin-bound enzymes to detect hybridization between biotinylated DNA probes and a particular nucleic acid molecule of interest. European Patent Application 133,473 discloses the use of biotin-avidin bridging agents as well as sugar-binding lectins to link the proteins and nucleic acid molecules used in a hybridization assay.
Avidin-biotin techniques are complex because of the many steps involved: probe is labeled with biotin, avidin is labeled with an enzyme or fluorochrome, the biotinylated probe is, hybridized to the target, and the labeled avidin is reacted with the biotinylated probe, the labeled avidin is detected by a colorimetric reaction or by illumination with light. A method of attaching a signal-generating enzyme or fluorochrome directly to the DNA to make a probe would be advantageous because the diagnostic test would be greatly simplified: the DNA would be labeled with the enzyme or fluorochrome, hybridized to the target, and detected by a colorimetric reaction or by illumination with light.
Antibodies have been employed as bifunctional conjugating agents to link proteins to nucleic acid molecules. U.S. Pat. No. 4,556,643 to Paau et al. discloses the use of antibodies, as well as DNA binding proteins, in hybridization assays. European Patent Application 146,815 discloses hybridization assays which employ antibodies capable of binding to a DNA intercalator molecule. Similar inventions are disclosed in U.S. Pat. No. 4,582,789 to Sheldon and in European Patent Application 131,830. These methods also require complex assay systems as compared to a directly labeled DNA probe.
A large number of covalent conjugating agents are known in the immunoassay art, where they have been used to directly attach such labels to antibodies or antigens. Antibodies or antigens labeled in this manner are sometimes referred to as immunologized probes. Such agents are also often used to attach immunogens to carriers. U.S. Pat. No. 4,469,797 to Albarella, discloses digoxigenin derivatives capable of acting as bifunctional coupling agents to link immunoglobulins to polypeptide carriers. U.S. Pat. No. 4,378,428 to Farina et al., discloses covalent conjugating agents which may be used in a homogeneous immunoassay. U.S. Pat. No. 4,302,534 to Halmann, et al., discloses the use of either antigen or antibody labeled with peroxidase in an immunoassay. U.S. Pat. No. 3,951,748 to Devlin, discloses an immunoassay in which a coupling agent immobilizes protein molecules to an insoluble matrix. U.S. Pat. No. 3,817,837 to Rubenstein discloses an immunoassay which employs a covalent conjugating agent to bind an enzyme ligand. The use of biotin as a bifunctional conjugating agent is disclosed in U.S. Pat. No. 4,298,685 to Parikh et al. U.S. Pat. No. 4,241,177 to Singh, additionally discloses similar covalent conjugating agents.
A small number of proteins bind readily to deoxyribonucleic acid (DNA). These are referred to as DNA binding proteins. Known DNA-binding proteins such as histones, RecA and single-stranded DNA binding protein (SSB) have been employed in hybridization and diagnostic assays. European Patent Applications 183,822 and 164,876 disclose hybridization methods for identifying known genetic sequences in a target DNA molecule which employ DNA binding proteins such as
E. coli
RecA and SSB. Japanese Patent Application 56001351 discloses a method for quantitatively analyzing DNA binding protein by affinity chromatography using a carrier to which DNA is linked. Histones and some other positively charged proteins form excellent DNA binding proteins. These proteins are candidates for labeling groups. However, most proteins that are signal generating or that would react with signal molecules are not DNA binding proteins. These may be attached to nucleic acids by covalent conjugating agents. Conjugate probes are made by bonding a labeling group to a nucleic acid by using a conjugating agent.
A number of methods are known for covalently crosslinking proteins to nucleic acid molecules. European Patent Application 151,001 discloses a polynucleotide which is covalently crosslinked to a protein molecule. European Patent Application EP 138,357 discloses additional bifunctional covalent conjugating agents. U.S. Pat. No. 4,587,044 to Miller et al. discloses nucleic acids which are modified by esterification with a saturated or unsaturated aliphatic dicarboxylic acid or anhydride to produce a molecule capable of being crosslinked to a protein. U.S. Pat. No. 4,699,876 to Libeskind, discloses a number of bifunctional cross-linking agents including N-succinimidyl 4-glyoxalylbenzoate, carbonyl imidazole, dimethyl superimidate, 1-ethyl,3-dimethylaminopropylcarbodiimide, paranitropenyl 3(2-bromo,3-ketobutylsulfonyl)propionate or other active esters, glutaraldehyde and other suitable equivalent.
The use of glutaraldehyde as a covalent conjugating agent capable of binding nondetectable proteins to nucleic acid molecules is disclosed by Borel et al.,
J. Immunol. Met.
67:289-302 (1984). Borel et al. describe a 2 stage process in which an oligonucleotide is incubated with glutaraldehyde and the oligonucleotide-glutaraldehyde conjugate is then incubated with the desired protein to produce the oligonucleotide-protein conjugate. Gluta

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Macromolecular conjugate made using unsaturated aldehydes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Macromolecular conjugate made using unsaturated aldehydes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Macromolecular conjugate made using unsaturated aldehydes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2568811

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.