Macrocyclic antibiotics as separation agents

Liquid purification or separation – With means to add treating material – Chromatography

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S502100, C210S635000, C210S656000

Reexamination Certificate

active

06669842

ABSTRACT:

Antibiotics are a class of chemical compounds which are produced by microorganisms; and capable, in a dilute solution, of inhibiting the growth of or destroying bacteria and other microorganisms. Today, some antibiotics are also produced synthetically. Chemically, antibiotics have a wide variety of structures and belong to various groups of compounds. Generally, antibiotics have three names, a chemical name, a generic name and a tradename. For example, tetracycline, generic name, is 4-dimethylamino-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-2-naphthocenecarboxamide, chemical name, and is sold under the tradenames Panmycin and Tetracyn. The generic name is generally preferred and will be used in the specification and claims.
A variety of methods are available for the separation of an individual component or chemical compound from fluids. Among these methods are distillation, extraction, crystallization, precipitation, filtration, electrophoresis and various chromatographic techniques.
Crystallization and precipitation are often batch operations which entail the addition of an agent to assist in the removal of a component from the fluid as a solid particle. Generally, the solid particles fall to the bottom or rise to the top of the fluid.
Filtration can be either a batch or continuous process and includes reverse osmosis or ultrafiltration and membrane permeation. Such processes entail the selective separation of components from a fluid due to the porosity of a filter. The filter itself can be either a fluid or a solid.
Chromatography, which also operates in either a batch or continuous mode, includes liquid chromatography, gas chromatography, paper chromatography and thin-layer chromatography. Chromatography is based on the differential distribution of components between two phases, a mobile phase and a stationary phase. The mobile phase is typically a gas or liquid while the stationary phase is typically a solid or a liquid. Separation occurs because the mobile phase is brought into contact with the stationary phase and caused to move past the stationary phase. Components in the mobile phase travel in the mobile phase at different rates depending on their affinity for the two phases.
Electrophoresis involves the motion of electrically charged particles in an electric field and comprises applying an electric field to a solution such that components in the solution move by means of the electric field. Electrophoresis can be done with free solutions in the presence of a gel, or in the presence of a chromatographic-like stationary phase (the later is sometimes referred to as electrochromatography). There are a variety of electrophoresis techniques. Electrophoresis can be performed in capillaries (capillary electrophoresis, CE), in tubes, in slabs, etc. Electrophoresis is typically only a batch process.
A number of these separation processes employ a chemical agent to assist in the separation of the compound which has been targeted for separation. Typically, these chemical agents, i.e. separation agents, are either added to the fluid phase so as to combine with the targeted compound and assist or effect the separation of the targeted compound, or the separation agent is fixed to a stationary phase and interacts with the targeted compound as it passes by the fixed separation agent thereby assisting or effecting the separation of the targeted compound.
When using crystallization or precipitation, the separation agent is typically added to the fluid such that it combines with the compound targeted for separation and causes precipitation or crystallization of a complex of the targeted compound and the separation agent. In a filtration process, the separation agents typically make up part of the filter by being either affixed to the filter or contained in the liquid which acts as the filter. In the fields of chromatography and electrophoresis, the separation agent is either attached to a solid support or dissolved in solution.
In the past, a number of different materials have been used as separation agents for chromatography and electrophoresis. Separation agents which have been affixed to the stationary phase in the field of chromatography include amino acids, derivatives of amino acids, proteins, cyclodextrins, derivatives of cyclodextrins and derivatives of linear or branched carbohydrates. In the field of electrophoresis, cyclodextrins and their derivatives have been used as separation agents with a wall immobilized chiral stationary phase. More often in the field of electrophoresis, the cyclodextrin is dissolved in free solution as are derivatives of cyclodextrin, amino acids, and soluble carbohydrates. The uses of separation agents in crystallization, precipitation, filtration, electrophoresis and chromatography is well-known and conventional.
The use of various separation agents and separation processes have been employed to separate optical isomers. The configuration of an optical isomer or chiral molecule generally determines its biological and pharmacological activity and effectiveness. It is not uncommon for one enantiomer of a chiral molecule to have a different activity from the other enantiomer. It is therefore essential to be able to separate and isolate the one enantiomer from the other. Separation agents used to separate optical isomers are often referred to as chiral selectors.
It has now been discovered that macrocyclic antibiotics can be used as separation agents in a wide variety of separation processes including crystallization, precipitation, filtration, chromatography and electrophoresis. In fact, in chromatography and electrophoresis processes, it has been found that the macrocyclic antibiotic of the present invention can separate certain optical isomers which were heretofore unable to be separated using known separation agents.
It is both surprising and unexpected that a macrocyclic antibiotic works in such a wide variety of separation processes because these macrocyclic antibiotics are so large. Heretofore only small antibiotics have been suggested for use as a separation agent, see U.S. Pat. No. 5,194,133 issued Mar. 10, 1993. The '133 patent does not disclose the use of antibiotics for separation of optical isomers.
It has been found that the macrocyclic antibiotic of the present invention can be used both as a stationary phase and as a mobile phase or solution additive for chromatography and electrophoresis. Specifically, it has been found that the macrocyclic antibiotic works as a stationary phase in chromatography and capillary electrophoresis and as a mobile phase or solution additive in capillary electrophoresis, thin-layer chromatography, and liquid chromatography. It has also been found that the macrocyclic antibiotic of the present invention when used as a stationary phase in chromatography is stable in both normal phase and reverse phase modes of operation. Furthermore, it appears that the selectivity of the stationary phase is different between the two chromatographic modes. Hence, the recognition mechanism in the reverse phase is not the same as the recognition mechanism in the normal phase. This phenomenon has been found in its enantioselectivity and its chiral recognition mechanism in both the normal and reverse phases for chromatography.
The macrocyclic antibiotic of the present invention, when used as a chiral selector in a stationary phase, has been found to have a greater stability and a higher capacity than the prior art protein based stationary phases. Unlike proteins, macrocyclic antibiotics are not denatured or irreversibly changed in enantioselectivity when used in normal phase mode.
It has also been found that closely related macrocyclic antibiotics when used as chiral selectors have somewhat similar but not identical selectivity. This means that if one macrocyclic antibiotic gives a partial separation then there is a very good chance that a closely related macrocyclic antibiotic will give a baseline separation under very similar and often identical operating conditions.


REFERENCES:
patent: 36

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Macrocyclic antibiotics as separation agents does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Macrocyclic antibiotics as separation agents, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Macrocyclic antibiotics as separation agents will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3149369

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.