Macro-fiber process for manufacturing a face for a metal...

Games using tangible projectile – Golf – Club or club support

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C473S345000, C473S349000, C473S409000

Reexamination Certificate

active

06663501

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to golf club head fabrication and more particularly to a method of forging a face for a golf club head and certain configurations of the face.
2. Description of Related Art
Three manufacturing methods are used to produce metal wood golf club heads. Such heads are generally hollow one piece assemblies made-up of a body sealed by a face which is used to strike the golf ball. The first, and most common method uses the metal casting process for the manufacture of the body with a cast or otherwise formed face. This method results in excellent shape for various designs and gives optimum weight distribution for wall thickness variation. However, casting porosity problems often present structural quality concerns particularly for the hitting face. The second method utilizes the common forming and assembling processes using plate and sheet stocks to achieve cost reduction. However, this approach imposes engineering-quality concerns from oxide contamination due to large weld regions, resulting in a tendency toward cracking due to inclusions of contamination and porosity on welding structures of several pieces. This process also suffers from structural discontinuities, non-homogenity, and problems related to dimensional stability & tolerances. The third method uses the forging process, which is capable of refining microstructure and properties from cast and from formed and welded products. It provides excellent product quality and performance, but this method is much more costly.
Manufacturing methods of these parts has evolved so that today most metal wood golf club heads are made with a cast body and forged face. This, apparently offers the most cost-effective manufacturing method, and gives excellent face design flexibility for higher performance. This process uses the casting process to produce a head body with a top or crown, bottom or sole plate and a neck or hostel portion. The forging process produces the hitting face. This has become a very common manufacturing method for producing titanium metal wood golf club heads. The cast-body with forged-face allows the head to be made from a wide range of materials and designs. It provides a high performance hitting face structure in an economic package. This approach avoids the defects often found in the other manufacturing approaches. However, the hitting faces produced by the forging or forming methods have not been optimized to produce superior products. This invention teaches a method for producing such products wherein the metallurgical capability in materials and in processing is able to further improve face performance and increase the degree of design freedom and product durability.
The following art defines the present state of this field:
Anderson, U.S. Pat. No. 5,024,437 describes a golf club head having a main body portion formed by investment casting of material such as stainless steel, beryllium copper, titanium, or aluminum. The face plate of the head is formed of a forged metal such as forged carbon steel, this plate being welded to the face portion of the casting to form an integral assembly therewith. The forged metal faceplate affords a more solid impact and feel to the club which provides better control.
Bhowal et al., U.S. Pat. No. 5,026,520 describes fine grain titanium forgings and a process for refining the grain size of alpha. and .alpha.-.beta. titanium alloys through forging and recrystallization above the alloy's .beta.-transus temperature. Specifically, the method employs an isothermal press in which a billet heated above the alloy's .beta.-transus temperature, forged to produce an elongated, flattened grain structure, is held above the alloy's .beta.-transus temperature for a predetermined time to allow fine grains to nucleate and grow through recrystallization, and then is quenched to arrest grain growth and to establish a fine grained titanium alloy. A second forging step may be employed to attain an aspect ratio of the grains. The fine grained titanium forgings made by this process have a maximum prior .beta.-grain size of 0.5 mm throughout the workpiece.
Anderson et al., U.S. Pat. No. 5,094,383 describes a golf club head having a main body portion formed by an investment casting of material such as stainless steel, beryllium copper, titanium, and aluminum. The face plate of the head is formed of a forged metal, such as forged carbon steel, this plate being welded to the face portion of the casting to form an integral assembly therewith. The forged metal faceplate affords a more solid impact and feel to the club which provides better control. Also, it has very high strength. Preferably, the head consists of cast stainless steel, and the face plate of forged stainless steel, both steels being of the same composition.
Anderson, U.S. Pat. No. 5,261,663 describes a golf club head having a main body portion formed by an investment casting of material such as stainless steel, beryllium copper, titanium, and aluminum. The face plate of the head is formed of a forged metal, such as forged carbon steel, this plate being welded to the face portion of the casting to form an integral assembly therewith. The forged metal face plate affords a more solid impact and feel to the club which provides better control. Also, it has very high strength. Preferably, the head consists of cast stainless steel, and the face plate of forged stainless steel, both steels being of the same composition. Face plate metal is preferably re-distributed toward the toe and heel of the head.
Takeda, U.S. Pat. No. 5,460,371 describes a metallic golf club wood head comprising a substantially planar face member welded to a container-shaped rear shell member having an open front face. A shaft connecting portion 7a is forged integrally with an upper portion of the face member 11a. A cut-out 14a is formed in an upper face of a front side of a rear shell member 12a for accommodating a lower portion of the shaft connecting portion 7a. As a result of this construction the number of structural members is reduced and the strength of the shaft connecting portion 7a is increased. Furthermore, the loft angle can be adjusted when manufacturing the face member 11a for example by forging. Moreover, since it is sufficient for the shaft connecting portion 7a to be formed at the top of the head only, the front side of the head can be lightened and the “sweet area” increased.
Preiss, U.S. Pat. No. 5,848,648 describes an improved process for the preparation and fabrication of horseshoes whereby pure titanium or titanium alloys are processed with the exclusion of contaminating gases such as oxygen, nitrogen and hydrogen. The titanium horseshoes have many advantages over the present state of art such as light weight, higher tensile strength, flexibility, wearing resistance, abrasion resistance, hypoallergenic, workability, formability, friction-free, physiologically inert, and are easily formed and shaped into the desired configuration.
Coulon, U.S. Pat. No. 5,545,271 describes A semi-finished product is taken made of a metastable beta titanium alloy containing oxygen in the range 0.4% to 0.7% by weight, and nitrogen in the range 0.1% to 0.2% by weight (oxygen+nitrogen.ltoreq.0.8%). The product is subjected to solution treatment at a temperature in the range 800.degree. C. to 900.degree. C. It is then cooled very quickly (.gtoreq.200.degree. C. per hour), the part is machined, ageing treatment is applied at a temperature in the range 550.degree. C. to 650.degree. C. for in the range 10 minutes to 2 hours so as to transform half of the beta titanium into alpha prime titanium. The titanium alloy part contains 40% to 60% of beta alloy, the remainder being alpha prime alloy. The part has good mechanical properties, good breaking strength, and a good elastic limit.
Hancock et al., U.S. Pat. No. 6,089,070 describes an improved golf club head and an improved method of manufacturing of a golf club head. More particularly, the invention relates to an improved metal wood

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Macro-fiber process for manufacturing a face for a metal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Macro-fiber process for manufacturing a face for a metal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Macro-fiber process for manufacturing a face for a metal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3125159

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.