Machine tool with a working area extending outside a...

Gear cutting – milling – or planing – Milling – With means to remove chip

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C409S134000, C409S165000, C409S172000, C409S198000, C082S101000, C082S162000, C029S02700R, C029SDIG005, C029SDIG009, C029SDIG001

Reexamination Certificate

active

06257811

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention concerns a machine tool having a tool spindle that receives a tool and has a vertically oriented spindle axis, and having a workpiece table on whose upper side is arranged at least one fixture for clamping in a workpiece to be machined with the tool, the tool spindle and workpiece table being displaceable relative to one another in a working region in which the workpiece is arranged.
2. Related Prior Art
A machine tool of this kind is known from DE 43 06 093 A1.
Commonly known machine tools generally have a workpiece table as well as a spindle head that carries the tool spindle and is displaceable relative to the workpiece table in three mutually orthogonal directions. It is also known to implement one or more of the orthogonal displacement directions by movement of the workpiece table.
Machine tools of this kind having vertical-axis tool spindles are used for material-removing machining of-among others-bulky and in some cases very heavy objects that are clamped onto the upper side of the workpiece table by way of a “fixture.” Depending on the application and field of use, various cutting, cooling, and/or flushing fluids —referred to hereinafter generally as “coolants”—are used to cool the tool being used, to improve the cutting effect, and to remove the chips that are produced during machining.
The machine tools have an encapsulated working space in which machining of the workpiece is accomplished. This encapsulated working space allows a very high coolant flow, with which the chips can be flushed away from the working region, i.e. from the workpiece being machined, the tool that is in use, and the workpiece table and other parts of the machine tool.
It is known to transport the chips via “chip chutes” into collection containers that are arranged in the machine stand of the particular machine tool. The coolant involved is aspirated or pumped off in the machine stand and reprocessed —in particular, filtered and in some cases also chemically purified —for further use.
Despite reprocessing, with these machine tools each machining operation on a workpiece is associated with a certain coolant loss, which is perceived as disadvantageous. A further disadvantage arises from the need for “reprocessing” of the used coolant, which requires design precautions and is associated with a certain energy consumption.
For reasons of cost and environmental protection, efforts are therefore being made to use as little coolant as possible in order to reduce both losses and the outlay involved in reprocessing.
At a lower coolant flow, however, there exists the risk that chips will stay adhered to various points in the working space of the machine tool, so that machine tools of this kind must often be “finish-cleaned” from inside. This is done in some cases by automatically blowing out the working space with compressed air, after a workpiece has been machined, to remove the adhering chips. It is also known to have these cleaning operations performed specifically by operating personnel.
Although it is possible in this fashion to reduce the coolant flow and thus the coolant loss entailed by the coolant flow, and to reduce costs for reprocessing, this advantage is canceled out by wage-intensive labor expenditure and additional design outlay for blow-cleaning with compressed air.
It has also been found in general that removal of the chips is nevertheless often unsatisfactory, so that in some cases finish-cleaning by hand is in fact necessary; this entails not only further wage costs, but also undesirable downtime for the machine tools designed in this fashion.
A further general advantage may be seen in the fact that the collected chips are mixed with coolant, so that laborious separation of the coolant is necessary prior to any reprocessing of the chips, e.g. in the manufacture of blanks.
In the machine tool known from the aforementioned DE 43 06 093 A1, two fixtures in which workpieces are alternatingly clamped and machined are arranged on the workpiece table. For this purpose, the working region is asymmetrically divided, by a spray shielding panel, into a loading side and a machining side; by rotating the workpiece table about its vertical axis, the loading side and machining side on its upper side can be transposed.
The spray shielding panel has a lower wall part that is rigidly attached to the workpiece table, and a pivotably mounted wall part whose underside rests loosely on the upper side of the rigid wall part and automatically rises and then descends again as the workpiece table is lifted and rotated.
With this machine tool as well, the aforementioned disadvantages occur in connection with the chips that are produced, which collect on the workpiece table and cannot be completely removed therefrom even by a very large coolant flow; finish-cleaning by hand is therefore necessary, this being performed whenever a machined workpiece is replaced, on the loading side, with a workpiece that has yet to be machined.
SUMMARY OF THE INVENTION
In view of the above, it is an object of the present invention to improve the machine tool mentioned at the outset in such a way that the aforementioned disadvantages are eliminated. In particular, the problem of removing the chips from the working region is to be solved with a simple design.
According to the present invention, this object is achieved in the case of the machine tool mentioned at the outset on the one hand by the fact that the working region extends at least partially, in a direction transverse to the spindle axis, outside the workpiece table, and the fixture projects in that direction beyond the table and holds the workpiece there, and preferably is open at the bottom so that chips that are produced can freely fall downward in the direction of the spindle axis.
The object underlying the invention is completely achieved in this fashion.
Specifically, the inventors of the present Application have recognized that, surprisingly, the disadvantages of the prior art can be eliminated not by way of different coolants or further devices for cleaning or blowing off the working region, but efficiently by way of measures of simple design. Because the fixture now projects out beyond the workpiece table and is open at the bottom, and the workpiece is machined, so to speak, next to (generally behind) the workpiece table, essentially no chips now get onto the workpiece table itself or onto the fixture; instead they fall downward through the fixture into the machine stand. This feature can be used in particularly advantageous fashion in conjunction with a “minimum-volume” lubrication system such as is known, for example, from DE 42 00 808 A1 or from DE 195 38 762 C2. In a minimum-volume lubrication system, coolant is used in very small quantities, so as to ensure only cooling of the tool and sufficiently good cutting quality. The chips occurring in this context are almost unwetted with coolant, i.e. cannot adhere either to the workpiece or to the tool or other parts of the machine tool.
In addition to good removal of chips, the further advantage that results with the new machine tool in conjunction with a minimum-volume lubrication system is therefore that reprocessing of the chips is greatly simplified, and costs for coolant recovery are essentially eliminated.
The overall result is that with the new machine tool, it is also no longer necessary to equip the working space with particular cleaning devices or to finish-clean it frequently by hand, although of course further cleaning device may be provided for reasons not of interest here.
Existing machine tools can also be refitted in accordance with the present invention: all that is necessary for that purpose is to reduce the size of the table plate of the workpiece table to the point that the working region, located above the workpiece table in the case of existing machine tools, at least partially projects laterally beyond the workpiece table that has now been reduced in size. Instead of the usual fixture, it is also necessary to mount on t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Machine tool with a working area extending outside a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Machine tool with a working area extending outside a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Machine tool with a working area extending outside a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2519976

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.