Machine tool distributor for cryogenic cooling of cutting...

Turning – Severing or cut-off – Combined with means to apply fluid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C082S052000, C082S120000, C407S011000

Reexamination Certificate

active

06564682

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH FOR DEVELOPMENT
Not Applicable.
BACKGROUND OF THE INVENTION
The present invention relates to machine tool cooling and to systems for supplying coolants to tools for cutting and other machine operations, and more particularly to distributors of cryogenic fluids for cooling tools mounted on a rotatable turret plate.
Examples of prior art devices and methods for cryogenic cooling tools in machining operations are disclosed in U.S. Pat. No. 5,761,974 (Wang, et al.) and U.S. Pat. No. 5,901,623 (Hong). These patents recognize that cryogenic cooling of tools for shaping parts by removing material is advantageous for its cleanliness, absence of the environmental impacts characterizing conventional cutting fluids, and improved tool life due to reduced tool wear rates.
However, the implementation of cryogenic cooling is difficult for tools mounted on rotationally indexing turret plates commonly used on machines like lathes or machining centers using a computerized numerical controller (CNC). Flowing from an external, pressurized source, the cryogen has to enter a machine carriage holding turret, which typically moves in two traverse directions (X-Z) and then proceeds to the specific tool that is engaged in a cutting operation at a given moment and has been mounted together with other tools on a multi-tool, rotationally indexing turret plate.
A turret-lathe coolant system disclosed in U.S. Pat. No. 5,265,505 (Frechette) is relatively simple to synchronize with the characteristic, rotational indexing of tools and may be retrofitted on the majority of modern CNC machines because the distribution valve and tubing are added on the top (or front) part of the turret. Unfortunately, the distributing valve, sealing and mounting mechanisms, as well as tubing used in the described apparatus, would certainly leak and eventually fail in a pressurized cryogenic fluid service, while the turret plate would suffer thermal shrinkage affecting dimensional accuracy of machined parts. The same comments apply to U.S. Pat. No. 5,862,833 (Perez), which discloses a somewhat improved sealing mechanism but requires a more complex retrofitting procedure and, because of an extensive conductive contact of the distributor with the turret plate, would result in significant dimensional inaccuracies during machining with a cryogenic fluid.
U.S. Pat. No. 4,164,879 (Martin) discloses a coolant system for a machine tool having a rotatable turret. The system includes a distributor mounted on the turret (coaxial with the axis of rotation of the turret) for directing coolant to a tool that has been indexed to the working position. The distributor includes a rotatable member (that rotates with the turret) in which a non-rotatable member is disposed. The rotatable member has a plurality of radially disposed passages which transmit coolant from the non-rotatable member to tool-receiving sockets on the turret. A check valve assembly in each socket and actuator members on selected tools selectably regulate the flow of coolant to tools in the working position. This coolant system would have many problems if used with cryogenic fluids, including moisture condensation and freezing of moving parts, leakage of low-viscosity cryogenic fluids through incompatible sealing components in which each material contracts thermally to a different degree while all elastomeric components become brittle, dimensional inaccuracy of an inadvertently cooled turret plate, etc.
Problems with dimensional accuracy and transfer efficiency characterizing valves distributing cryogenic fluids to cutting.tools in machining applications have been recognized in U.S. Pat. No. 5,509,335 (Emerson). The turret-plate distribution system taught in this patent features an actuated plunging valve which disconnects or connects tubing communicating with specific tools via a plunger seat according to the rotational indexing procedure called upon by a machining CNC program. While minimizing thermal shrinkage problems, this system requires a complete redesign of the turret, something highly impractical in a production environment, making quick retrofits impossible. Moreover, the plunging valve synchronization with the indexing action of the turret is not simple, and the reliability or life of the plunger seat is limited.
It is desired to have a distributor for delivering a liquid or two-phase stream of a cryogenic fluid (e.g., liquid nitrogen) to a specific tool mounted on a multi-tool turret and engaged in a machining operation, such as cutting.
It is further desired to have a distributor of a cryogenic fluid that can be easily installed on existing machines quickly and simply.
It is still further desired to have a cryogenic fluid distributor for cooling a machine tool that does not eliminate the capability of machining operations with conventional cutting fluids and does not preclude the option of simultaneously using a conventional fluid system and a cryogenic tool cooling system.
It is still further desired to have a cryogenic fluid distributor for cooling a machine tool that is affordable in the (low-margin driven) machining industries.
It is still further desired to have a distributor for delivering a cryogenic fluid which eliminates the possibility of cooling the tool-holding turret plate to prevent thermally induced dimensional inaccuracies in machined parts, and which operates in a liquid cryogen leak-free mode.
It is still further desired to have a distributor for delivering a cryogenic fluid which maximizes the use of thermally insulating materials and components, and which is characterized by a minimum thermal mass that can be cooled-down quickly so that only negligible, transient vapor choking would occur during warm start-ups of cryogenic flow, which may be required in the case of significantly interrupted machining operations.
It also is desired to have a distributor for delivering a cryogenic fluid which is reliable in operation, has no fast wearing parts, offers a simple synchronization with the rotational indexing of the turret plate, and never fails or seizes in a way that will damage machine tools, components, or parts being machined.
BRIEF SUMMARY OF THE INVENTION
The present invention is a distributor of a cryogenic fluid for cooling at least one machining tool mounted on a rotatable turret plate. The cryogenic distributor can be retrofitted on conventional machine tools in such a way that the distributor does not eliminate the capability of machining operations with conventional cutting fluids.
A first embodiment of the invention includes a polymeric rotor, a metallic stator, and a self-sealing means. The polymeric rotor has a first coefficient of thermal expansion and a cavity within the rotor. The metallic stator has a first end, a second end, a first longitudinal axis, and a second coefficient of thermal expansion. A substantial portion of the stator is disposed in the cavity within the rotor, thereby forming at least one interface between the stator and the rotor. With regard to the self-sealing means, a difference between the first coefficient of thermal expansion and the second coefficient of thermal expansion results in at least one seal at the at least one interface between the stator and the rotor when the cryogenic fluid flows through at least a portion of the stator. In a variation of the first embodiment, the rotor may be disposed within a vapor jacket, thereby forming an annulus between the vapor jacket and the rotor.
Various cryogenic fluids may be used with the distributor. For example, the cryogenic fluid may be selected from the group consisting of cryogenic nitrogen, cryogenic argon, cryogenic carbon dioxide, cryogenic helium, and any combinations and mixtures thereof having a temperature less than or equal to minus 80° Celsius. Flow of the cryogenic fluid to the distributor may be regulated by a flow control means, such as a flow control box.
In a preferred first embodiment, the distributor also includes a first metallic counter-s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Machine tool distributor for cryogenic cooling of cutting... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Machine tool distributor for cryogenic cooling of cutting..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Machine tool distributor for cryogenic cooling of cutting... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3081490

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.