Machinable plastic compensator filter

X-ray or gamma ray systems or devices – Specific application – Absorption

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C378S018000, C378S156000

Reexamination Certificate

active

06381304

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to radiation therapy techniques, and is more especially related to filters that are employed with high energy radiation sources, such as linear accelerators, for selectively attenuating the beam to compensate for missing tissue, i.e., where a patient may have previously undergone extirpative surgery.
Radiation therapy is often used for treatment of malignancies, such as tumorous tissue, as an alternative to more invasive techniques such as surgery. That is, radiotherapy minimizes the discomfort to the patient and the risk of infection. In radiation therapy, a source of radiation external to the patient generates a beam that is directed at the tumor. However, even though this technique avoids some of the problems inherent with surgery, there is a danger of exposing non-tumorous, healthy tissue to a harmful level of radiation. The risk of this is reduced somewhat by irradiating the patient from a number of different gantry angles, and also by carefully collimating the therapy beam so that the dose falls mainly on the tumorous tissue.
Radiation therapy treatments have seen a rapid growth over the past decade, and the techniques to improve the accuracy and safety of these techniques have improved. For a patient having an area of missing tissue, as can occur following a radical extirpative surgical procedure, a compensator filter may be used in the beam of the radiation source. The compensator filter may be used to prevent overdosage of radiation in the tissues surrounding the area of the defect, and to provide a more uniform radiation treatment to the area being treated. The compensator filter has to be made up for each specific patient, and may have to be redone as the area of tumorous tissue shrinks as a result of treatment.
The compensator filter is typically formed by milling a blank of material on a milling machine, and then treating or filling the milled blank with an absorptive substance. In practice, the patient is first subjected to a scan of the area that is to be treated. This can be a direct laser scan that is specifically designed to image the tissue defects, or can be obtained from information obtained in a computed tomographic scan or magnetic resonance imaging (MRI) scan. This information may then be input into a treatment planning computer, which creates a plot for design of a filter to modify the radiation beam to adjust the dose in the area of the missing tissue. This information can be outputted to a computerized milling machine to create the compensator filter.
The most common technique of creating a filter involves milling a block of foamed polystyrene plastic in an inverse or negative configuration. Then, the block is removed from the machine, and placed under a hood in a mold room. A heated filter material, e.g., “Cerrobend”, a liquid metal product that contains lead and cadmium, is poured into the foam block and is allowed to cool. Then the top surface of the Cerrobend material is milled away to remove the meniscus and create a flat top surface. The completed filter is then inserted in a filter holder on the linear accelerator (or other high-energy machine) so that it is the path of the beam between the source and the patient. The filter can be reused for the same patient over a series of therapy sessions.
This technique has a number of disadvantages. First, it contains heavy metals, notably lead and cadmium, which are toxic. The technician must be especially careful that all the dust removed from the filter during milling not enter the atmosphere where it could be breathed in. Also, the filter material itself cannot be simply discarded when the patient's treatment ends. Moreover, because the attenuation properties of this material are much greater than that of the patient's tissues involved, small thicknesses of the Cerrobend material are used. This limits the to degree of accuracy obtainable, as small changes in thickness can produce large changes in attenuation.
An alternative technique for creating a compensator filter involves milling an aluminum block. This avoids the toxicity problems of Cerrobend, but also requires a heavier milling machine than what is required for a foam plastic block, which increases the expense. Another alternative involves addition to the foam block of stainless steel in powder form, and the addition of a cover plate. There can also be a combination wax and metal form used, which is milled. However, because of its rather low attenuation characteristics, the filter is too thick for the filter holder.
OBJECTS AND SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a compensator filter for radiation therapy that avoids the drawbacks of the prior art.
It is another object to provide a compensator filter that is inexpensive and non-toxic, and which can compensate accurately for missing tissue without the filter being unduly thick.
It is a further object to provide a filter that can be created on a standard milling machine that is used for foam blocks, and which fits into a standard filter tray of a linear accelerator or other high-energy source.
It is still another object to provide a filter which is both inexpensive and safe to mill and to use, and which can be discarded as normal waste.
In accordance with an aspect of the present invention, a compensator filter is provided for a radiotherapy machine, such as a linear accelerator device, which emits a radiotherapy beam that is directed at a patient. A filter tray is disposed between the linear accelerator device and the patient, and the compensator filter is situated in the filter tray. The filter serves to attenuate the radiotherapy beam selectively, compensating for missing tissue that has been surgically removed from the patient. The filter is improved over the prior art in that it is formed of a non-toxic plastic material having a density of about 1 to 2 times that of the tissue of the patient, in terms of its ability to attenuate the radiotherapy beam. The material is free of heavy metal substances, such as lead or cadmium, and is disposable as ordinary trash.
In a preferred embodiment, the compensator filter is formed of a polyurethane with a fill of glass beads, which has a density of about 1.7 times that of normal human tissue.
The compensator filter can be created by first obtaining a filter pattern for the patient to compensate for tissue that has been surgically removed from the patient. This can be accomplished by direct laser scanning of the patient using a laser scanner that is specifically arranged for imaging tissue defects. Alternatively, the information can be obtained from either a computed tomography scan or a magnetic resonance imaging scan. This information is processed in a treatment planning computer to design the filter so that is modifies the therapy radiation beam to adjust the dose in the area of the missing tissue. Then the information is provided to a filter milling machine. A block of a machinable plastic material is milled according to the pattern, where said material has a density of about one to two times the density of the tissue of said patient. The plastic material is preferably an inert polymer, such as cast polyurethane resin, with a filler of a suitable glass material, such as beads or microspheres of silicon oxide and silicon dioxide.
As an alternative, the milling machine can form a negative mold for the filter, into which the resin material can be poured or cast, to create a molded plastic filler.
In either case, there is no toxic dust created in the milling process, and there is no need for any handling of toxic or dangerous materials in the creation, use, or disposal of the filter. The density of the material, i.e., 1.7 times that of water or human tissue, both allows the material to be milled accurately and also means that the filter will be thin enough to be used in a standard filter or shadow tray. No addition of absorptive materials (such as Cerrobend) is needed, nor is it necessary to use a hood or other precautions that are associat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Machinable plastic compensator filter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Machinable plastic compensator filter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Machinable plastic compensator filter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2845530

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.