Lymphoid tissue-specific cell production from hematopoietic...

Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Method of regulating cell metabolism or physiology

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S363000, C435S372000, C435S372300, C435S373000, C435S395000, C435S402000, C435S352000, C435S035000, C623S016110

Reexamination Certificate

active

06548299

ABSTRACT:

FIELD OF THE INVENTION
The invention pertains to the co-culture of hematopoietic progenitor cells and lymphoreticular stromal cells in three-dimensional devices, resulting in unexpectedly high numbers of lymphoid tissue-specific cell progeny.
BACKGROUND OF THE INVENTION
A characteristic of the immune system is the specific recognition of antigens. This includes the ability to discriminate between self and non-self antigens and a memory-like potential that enables a fast and specific reaction to previously encountered antigens. The vertebrate immune system reacts to foreign antigens with a cascade of molecular and cellular events that ultimately results in the humoral and cell-mediated immune response.
The major pathway of the immune defense involving antigen-specific recognition commences with the trapping of the antigen by antigen presenting cells (APCs), such as dendritic cells or macrophages, and the subsequent migration of these cells to lymphoid organs (e.g., thymus). There, the APCs present antigen to subclasses of T cells classified as mature T helper cells. Upon specific recognition of the presented antigen, the mature T helper cells can be triggered to become activated T helper cells. The activated T helper cells regulate both the humoral immune response by inducing the differentiation of mature B cells to antibody producing plasma cells and the cell-mediated immune response by activation of mature cytotoxic T cells.
The thymus has been shown to be an obligatory factor in T cell differentiation of hematopoietic cells. Based upon the murine model, it is believed that the presence of a three dimensional organ is required, as in vitro models that do not include the thymus and a three dimensional structure fail to support T cell lymphopoiesis (Owen J J, et al.,
Br Med Bull.,
1989, 45:350-360). The process of differentiation, however, appears to begin prior to progenitor cells contacting the thymus.
Primitive hematopoietic progenitors in the fetal liver or bone marrow give rise to lineage committed cells, including progenitors committed to the T lymphoid lineage. These most immature cells are identified by the surface expression of CD34. T cell lineage committed cells express CD34, but no discrete expression of other epitopes found only on T cell progenitors has been described. Further, T lymphocyte differentiation normally occurs via a series of discrete developmental stages. Primitive progenitor cells which do not express lymphocyte specific cell surface markers (CD34+ CD3− CD4− CD8−) migrate to the thymus where they acquire, through a series of maturational events, the phenotype CD34− CD3− CD4+ CD8−. These cells then mature into double positive CD4+ CD8+ cells, most of which are CD3+, although CD3 expression is not universally detectable. These cells further undergo both positive and negative selection, and mature to develop into single positive T cells (CD4+ CD8− or CD4− CD8+). These cells ultimately migrate into the peripheral circulation as naive T cells.
T cell disorders and diseases represent major health problems. Recent progress has been made using gene therapy to treat conditions involving T lymphocytes, including AIDS. This has fostered increased interest in the development of laboratory techniques that allow in vitro evaluations of potential genetic therapies for these conditions.
The understanding of T cell differentiation has been hampered by the limited availability of technologies which permit in vitro T cell differentiation. To date, T cell differentiation studies have been largely confined to the SCID-hu mouse in vivo model. In vitro technologies have been based on thymic explant studies and primate thymic monolayers. In a recent advance, primate thymic stroma cultures have been shown to provide an expedient, although inefficient, system for examining T cell development, enabling in vitro T cell differentiation in a reproducible manner. However, the purity and number of T cells generated this way, as well as the relatively short half-life of the cultures, generally results in limited applicability to more advanced studies of T cell differentiation and function.
SUMMARY OF THE INVENTION
The invention, in one important part, involves improved methods for culturing hematopoietic progenitor cells that direct their development toward lymphoid tissue-specific lineages without the addition of exogenous growth factors. Thus, one aspect of the invention is the culture of hematopoietic progenitor cells to generate progeny committed to a specific lineage. Another aspect is an improvement in the rate and the number of differentiated progeny that can be obtained from a sample of hematopoietic progenitor cells.
We describe herein a system that takes advantage of biocompatible, open-pore, three-dimensional matrices, and uses human and non-human lymphoreticular stromal cells to provide the appropriate conditions for the expansion and differentiation of human and non-human hematopoietic progenitor cells toward a specific cell lineage. T lymphocytes, for example, derived from these cultures respond normally to a variety of stimuli and express the diversity of markers expected of mature T cells.
This system provides significant advantages over existing techniques. For example, it can provide for the rapid generation of a large number of differentiated progeny necessary for laboratory analysis and/or therapeutic uses, including for in vitro testing of potential gene therapy strategies or for reinfusion into subjects in vivo. The matrix itself can be implanted into subjects for in vivo studies of hematopoietic cell growth. The system also can reasonably replicate the complex process of hematopoietic cell maintenance, expansion and/or differentiation toward a specific lineage.
Surprisingly, according to the invention, it has been discovered that hematopoietic progenitor cells co-cultured with lymphoreticular stromal cells in a porous solid scaffold, without the addition of exogenous growth agents, generate at a fast rate an unexpectedly high number of functional, differentiated progeny of a lymphoid-specific lineage. The lymphoid tissue from which lymphoreticular stromal cells are derived helps determine the lineage-commitment hematopoietic progenitor cells undertake, resulting in the lineage-specificity of the differentiated progeny. Also surprising, according to the invention, is the discovery that lesser amounts of nonlymphoid cells (i.e. myelo-monocytic cells) are generated from the co-culture of hematopoietic progenitor cells and lymphoreticular stromal cells in a porous solid scaffold of the invention when compared to existing methodology. Thus, the present invention permits for the rapid generation of a large number of differentiated, lymphoid-specific cells from a relatively small number of hematopoietic progenitor cells. Such results were never before realized using known art methodologies (e.g., as in U.S. Pat. No. 5,677,139 by Johnson et al., which describes the in vitro differentiation of CD3
+
cells on primate thymic stroma monolayers, or as in U.S. Pat. No. 5,541,107 by Naughton et al., which describes a three-dimensional bone marrow cell and tissue culture system).
According to one aspect of the invention, a method for in vitro production of lymphoid tissue-specific cells is provided. The method involves introducing an amount of hematopoietic progenitor cells and an amount of lymphoreticular stromal cells into a porous, solid matrix having interconnected pores of a pore size sufficient to permit the hematopoietic progenitor cells and the lymphoreticular stromal cells to grow throughout the matrix. The hematopoietic progenitor cells and the lymphoreticular stromal cells are then co-cultured. The amount of the lymphoreticular stromal cells utilized is sufficient to support the growth and differentiation of the hematopoietic progenitor cells. In one embodiment, co-culturing occurs under conditions sufficient to produce at least a 10-fold increase in the number of lymphoid t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lymphoid tissue-specific cell production from hematopoietic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lymphoid tissue-specific cell production from hematopoietic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lymphoid tissue-specific cell production from hematopoietic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3019769

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.