Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Hollow or tubular part or organ
Reexamination Certificate
1999-08-24
2002-07-09
Nguyen, Dinh X. (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Implantable prosthesis
Hollow or tubular part or organ
C600S037000
Reexamination Certificate
active
06416554
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is generally directed to an apparatus and method for treating Chronic Obstructive Pulmonary Disease (COPD). The present invention is more particularly directed to such an apparatus and method which may be implanted in the human body to provide lung size reduction by constricting at least a portion of a lung.
Chronic Obstructive Pulmonary Disease (COPD) has become a major cause of morbidity and mortality in the United States over the last three decades. COPD is characterized by the presence of airflow obstruction due to chronic bronchitis or emphysema. The airflow obstruction in COPD is due largely to structural abnormalities in the smaller airways. Important causes are inflammation, fibrosis, goblet cell metaplasia, and smooth muscle hypertrophy in terminal bronchioles.
The incidence, prevalence, and health-related costs of COPD are on the rise. Mortality due to COPD is also on the rise. In 1991 COPD was the fourth leading cause of death in the United States and had increased 33% since 1979.
COPD affects the patient's whole life. It has three main symptoms: cough; breathlessness; and wheeze. At first, breathlessness may be noticed when running for a bus, digging in the garden, or walking up hill. Later, it may be noticed when simply walking in the kitchen. Overtime, it may occur with less and less effort until it is present all of the time.
COPD is a progressive disease and currently has no cure. Current treatments for COPD include the prevention of further respiratory damage, pharmacotherapy, and surgery. Each is discussed below.
The prevention of further respiratory damage entails the adoption of a healthy lifestyle. Smoking cessation is believed to be the single most important therapeutic intervention. However, regular exercise and weight control are also important. Patients whose symptoms restrict their daily activities or who otherwise have an impaired quality of life may require a pulmonary rehabilitation program including ventilatory muscle training and breathing retraining. Long-term oxygen therapy may also become necessary.
Pharmacotherapy may include bronchodilator therapy to open up the airways as much as possible or inhaled &bgr;-agonists. For those patients who respond poorly to the foregoing or who have persistent symptoms, Ipratropium bromide may be indicated. Further, courses of steroids, such as corticosterocds, may be required. Lastly, antibiotics may be required to prevent infections and influenza and pheumococcal vaccines may be routinely administered. Unfortunately, there is no evidence that early, regular use of pharmacotherapy will alter the progression of COPD.
About 40 years ago, it was first postulated that the tethering force that tends to keep the intrathoracic airways open was lost in emphysema and that by surgically removing the most affected parts of the lungs, the force could be partially restored. Although the surgery was deemed promising, the procedure was abandoned.
The lung volume reduction surgery (LVRS) was later revived. In the early 1990's, hundreds of patients underwent the procedure. However, the procedure has fallen out of favor due to the fact that Medicare stopped remitting for LVRS. Unfortunately, data is relatively scarce and many factors conspire to make what data exists difficult to interpret. The procedure is currently under review in a controlled clinical trial. However, what data does exist tends to indicate that patients benefited from the procedure in terms of an increase in forced expiratory volume, a decrease in total lung capacity, and a significant improvement in lung function, dyspnea, and quality of life.
Improvements in pulmonary function after LVRS have been attributed to at least four possible mechanisms. These include enhanced elastic recoil, correction of ventilation/perfusion mismatch, improved efficiency of respiratory musculature, and improved right ventricular filling.
Lastly, lung tranplantation is also an option. Today, COPD is the most common diagnosis for which lung transplantation is considered. Unfortunately, this consideration is given for only those with advanced COPD. Given the limited availability of donor organs, lung transplant is far from being available to all patients.
In view of the foregoing, there in a need in the art for a new and improved therapy for COPD. More specifically, there is a need for such a therapy which provides more permanent results than pharmacotherapy while being less traumatic than LVRS. The present invention is directed to an apparatus and method which provide such an improved therapy for COPD.
SUMMARY OF THE INVENTION
The present invention provides an implantable apparatus for reducing the size of a lung. The apparatus includes a jacket of flexible fabric configured to cover at least a portion of a lung and collapsing means carried by the jacket for collapsing the jacket about the lung portion.
The invention still further provides a method of reducing the size of a lung. The method includes the steps of disposing a jacket of flexible fabric over at least a portion of a lung. The collapsing of the jacket may serve to both reduce the size of the lung and maintain it in its reduced size condition. Alternatively, the lung portion may first be deflated whereupon the collapsed jacket serves to maintain the lung portion in a deflated, reduced size condition.
REFERENCES:
patent: 5702343 (1997-12-01), Alferness
patent: 6123663 (2000-09-01), Rebuffat
patent: 6241654 (2001-06-01), Alferness
Alferness Clifton A.
Jaeger Wilfred E.
Lin Richard Y.
Chattopadhyay Urmi
Graybeal Jackson Haley LLP
Nguyen Dinh X.
Spiration, Inc.
LandOfFree
Lung reduction apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Lung reduction apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lung reduction apparatus and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2866406