Luer-receiving medical valve and fluid transfer method

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reissue Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S033000, C604S164030, C251S334000

Reissue Patent

active

RE037357

ABSTRACT:

BACKGROUND AND SUMMARY OF THE INVENTION
The risk of needlestick injury and the expense associated with accessory cannulae, whether blunt or sharp, are well known. Conventional intravenous tubing systems utilize tapering luer male cannula connectors, often within an associated surrounding threadable member defining a luer-lock connector commonly used for achieving tight, sustained connections. A bare luer taper cannula without the associated threadable member is commonly called a luer slip connector and is widely utilized for brief prn injections. Both of these luer systems are in wide use throughout conventional hospital systems and it would be preferable to develop a connecting valve system which receives and is activated by conventional luer slip tapers or luer lock tapers so that incorporation into existing hospital systems is rapid and associated with minimal cost. It would be advantageous for such systems to avoid deadspace so that the surface could be easily wiped with antiseptic to avoid the need for capping after each use. Furthermore, the elimination of deadspace allows for the aspiration of blood through such systems without the collection of blood within the deadspace. Another important feature of such systems is the minimization of “kickback”—that is, it is important that the luer slip tip or luer lock systems, when not tightly locked, do not kickback out of the valve, thereby producing the potential for a spurt of blood or fluid into the environment and potential contamination of the operator. The prior art includes several luer-receiving valves which do not have substantial deadspace. U.S. Pat. No. 5,201,725 discloses shows a valve which utilizes an elastomeric member which opens by force induced by a threadable member over the elastomeric septum piston. Such a system will not work with a conventional luer lock system since the male taper extends centrally adjacent the luer lock threading member and therefore, it would not be possible to compress the septum piston within the luer-lock threads in such a system without inserting the male member itself into the septum piston. The background discussed in the aforementioned patent provides additional background for the present invention.
A device, designated the CLAVE™, for an injection port marketed by McCaw, is included in the Prior Art. This device utilizes a cannula surrounded by a septum piston. The septum piston is compressed by the luer taper, thereby allowing the needle and its associated bore to enter the bore of the luer taper, thereby opening fluid communication. However, such systems would be expected to be associated with substantial kickback when used with a luer slip system since the septum piston must be relatively resilient to prevent leakage associated with higher fluid pressures within the cannula. Further, the requirement of a spike or cannula within the bore of the valve results in considerable increase in expense associated with complex insert molding of the device. It is, therefore, preferable to develop a more simplified valve system which can receive a luer taper cannula and which eliminates the need for complex insert molding to minimize the potential for kickback and the potential for trapped fluid or blood while still providing a deadspace-free surface which can be easily wiped with antiseptic.
In general, the present invention comprises a housing including a main conduit having a main bore and further having a branch extending away from the main conduit and including a secondary bore extending through the branch in fluid communication with the main conduit. The secondary bore may be aligned directly with the main conduit or may branch from the main conduit. The main conduit may, for example, comprise a catheter or may be a primary intravenous tubing system or arterial line. The secondary bore defines a longitudinal axis. An elastomeric septum piston is disposed within the secondary bore and at least a portion of the elastomeric septum piston is moveable by either compression or by longitudinal advancement along the secondary bore toward the main bore. In one preferred embodiment, the septum piston is cylindrical and includes a centrally positioned slit extending along the longitudinal axis of the cylindrical septum piston. The cylinder includes a proximal end and a distal end. The proximal end preferably extends to a position adjacent the proximal end of the secondary bore so that the surface of the proximal end of the septum piston is easily accessible adjacent the proximal end of the branch and therefore can be easily wiped with antiseptic. This is an important feature since it eliminates the need for capping after blood aspiration or drug injection. The bore of the secondary branch preferably includes two opposing projecting members along a distal portion of the bore which effectively narrow the diameter of the bore along at least a portion of one longitudinal axis. In the preferred embodiment, the central slit through the septum piston defines a longitudinal axis transverse to the longitudinal axis of the septum piston. With this embodiment, the longitudinal plane of the narrowed distal portion of the secondary bore is aligned with the longitudinal axis of the slit through the elastomeric septum piston. Furthermore, the elastomeric septum piston is sized to be transversely compressed by the projecting distal portions of the secondary bore. Since the slit is aligned with the projecting portions, transverse compression of the septum piston occurs along an axis which corresponds with the longitudinal axis of the slit so that when the elastomeric member is pushed from a proximal position into a distal position, the elastomeric member is transversely compressed by the projecting portions along the distal secondary bore, the compression causing the formerly tightly-closed slit to shorten and thereby open, allowing fluid to pass through a nascent flow channel formed by the shortened slit through the elastomeric septum piston. When the septum piston retracts away from the distal portion back into the proximal portion, the slit returns to its tightly closed position, thereby occluding further fluid communication through the septum piston.
In the preferred embodiment, the projecting portions progressively lengthen to define a progressively decreasing distance between the projecting members so that the projecting members are closer to one another adjacent the main bore than adjacent the proximal cylindrical portion of the secondary bore. This effectuates a progressive enlargement of the opening through slit of the elastomeric septum piston when the elastomeric septum piston is fully advanced into the proximal portion of the secondary bore. Furthermore, after removal of the luer, as the elastomeric septum piston retracts away from the distal compressing portion toward the proximal portion, the slit progressively closes from its proximal extent toward its distal extent, thereby expressing fluid toward the main bore rather than toward the proximal opening of the secondary bore. This reduces the chance of blood or fluid refluxing out of the septum piston into the environment or into the secondary bore when luer taper cannula is withdrawn from the secondary bore. The branch of the main conduit can be aligned directly with or perpendicular to the main conduit or can be at an oblique or acute angle with the main conduit. The main conduit is generally discussed below as integral with the valve, but the main conduit may be a separate piece and sold separately, and may be joined with the branch or the aligned secondary bore by a threadable member as ,for example, joining a conventional heparin well or prn adapter to a catheter, stopcock, or IV tubing system. The branch preferably includes at least one external thread or thread receiver for receiving an internal female threading member to allow a secure threaded connection with a conventional luer-lock type connector of the type commonly used with conventional syringes or intravenous tubing systems. The use of this luer-activated valve in association with

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Luer-receiving medical valve and fluid transfer method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Luer-receiving medical valve and fluid transfer method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Luer-receiving medical valve and fluid transfer method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2547646

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.