Lubricating oil compositions

Solid anti-friction devices – materials therefor – lubricant or se – Lubricants or separants for moving solid surfaces and... – Organic sulfur compound – wherein the sulfur is single bonded...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C508S391000, C508S460000, C508S518000, C508S584000, C508S586000

Reexamination Certificate

active

06720294

ABSTRACT:

This invention relates to lubricating oil compositions suitable for use in the crankcase of internal combustion engines.
It is well known that the lubricating ability of lubricating oil compositions, (lubricants or simply oils) deterior rates with use in internal combustion engines. For example, in diesel (compression ignited) engines the viscosity of the oil may increase undesirably due to increasing soot levels. This increase may still occur despite the presence of ashless dispersants in the oil. A recognised measure of viscosity increase for diesel engines is the so-called Mack T8 test which forms part of the American Petroleum Institute (API) performance category CG-4. In order to attain acceptable levels of performance in tests such as the Mack T8, it is often necessary to increase the quantity of ashless dispersant present in the oil. However, this is often undesirable due to the poor seal compatibility properties of the dispersant and the increased likelihood of corrosion to bearings.
Lubricating oil compositions may also comprise neutral or overbased metal detergents as additives, or additive components. Chemically, the consist of metal salts of organic acids, such as hydrocarbyl-substituted sulphonic or aromatic carboxylic acids, or may be metal salts of hydrocarbyl-substituted phenols. Such metal salts are sometimes referred to as surfactants or as soaps. The hydrocarbyl substituents are of a sufficient length to confer oil-solubility to salts which would generally be insoluble in oils of lubricating viscosity. The metal is usually an alkaline earth metal, although other metals may also be used. Mixtures of metals may also be used.
The term “overbased” is intended to define additives which contain a metal content in excess of that required by the stoichiometry of the particular metal and the particular organic acid used. The excess metal exists in the form of particles of inorganic base, e.g. a hydroxide or carbonate, surrounded by a sheath of metal salt. The sheath serves to maintain the particles in dispersion in a liquid oleaginous vehicle. The amount of excess metal is commonly expressed as the ratio of total equivalence of excess metal to equivalence of organic acid and is typically 0.1 to 30.
The principal function of the metal detergents in lubricationg oil compositions is to neutralise acidic products within the oil, and/or to prevent the formation of deposits on the surfaces of an engine. Depending on the nature of the acid used, the detergent may have additional functions, for example, antioxidant properties. Typically, lubricating oil compositions contain metal detergents comprising either overbased detergents or mixtures of neutral and overbased detergents.
The present invention is based on the realisation that an improvement in the control of oil viscosity can be obtained, without increasing the levels of ashless dispersants, if low concentrations of surfactant in metal detergents are used in the lubricating oil composition. The metal detergents used are of long chain hydrocarbyl substituted organic acids.
Thus, a first aspect of the invention is a lubricating oil compositions comprising, as a detergent, one or more metal salts of long chain hydrocarbyl-substituted organic acids such as selected from aromatic carboxylic acids, sulfonic acids or phenol derivatives, the total concentration of such metal salts being not more than 15 mmol/kg of the composition, provided that the composition is not an SAE 5 W composition whose base stock comprises less than 5, such as less than 6 or 10, wt. % non-conventional lubricant. Preferably, the acids are selected from aromatic carboxylic acids or phenol derivatives.
The concentration of metal salt is that of the salt as such and does not include any overbaseing material (or base) in the detergent. In particular, it has been found that concentration of the metal salt as low as 8 mmol per kg oil or lower are sufficient to achieve a performance in diesel engine tests exceeding current specification requirements.
Therefore, the present invention allows the amount of ashless dispersant required to maintain the viscosity of a lubricating oil composition within acceptable limits to be reduced to economically-attractive levels, such as from 3 to 10 mass %, based on the mass of the composition. The present invention also allows the lubricating oil compositions to maintain a high level of performance in areas such as seals and bearings.
It is surprisingly found that the metal salts, in the form of salicylates when used at the above-stated concentrations, provide the lubricating oil compositions with a cleanliness performance that exceeds current specification requirements, as evidenced by performance in a range of standard US and European diesel engine tests, including:
the Caterpillar 1 K test, which forms part of the API performance category CF-4 ;
the Mercedes Benz OM364A test, which forms part of the ACEA performance categories E1-E3 96.
A second aspect of the invention is a method of making a lubricating oil composition comprising admixing a major amount of an oil of lubricating viscosity and minor amounts of metal salt as defined in the first aspect of the invention.
A third aspect of the invention is a method of lubricating a diesel engine which comprises supplying to the engine a lubricating oil composition according to the first aspect of the invention or made according to the second aspect of the invention.
A fourth aspect of the invention is a method of alleviating viscosity in a lubricating oil composition due to the presence of increasing levels of soot when the composition is lubricating a diesel engine, which comprises using, in the composition, a detergent as defined in the first aspect of the invention.
In this specification:-“Major amount” means in excess of 50 mass % of the mass of the composition.
“Minor amount” means less than 50 mass % of the mass of the composition, both in respect of the stated additive and in respect of the total mass % of all of the additives present in the composition, reckoned as active ingredient of the additive or additives.
“Comprises”, or cognate words, is taken to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
“Non-conventional lubricants (NCL's)” are basestocks that do not fall within Groups 1 and 2 according to the classification of basestocks provided by the American Petroleum Institute (API) in its Publication 1509 dated January 1993 entitled “Engine Oil Licensing and Certification System” (EOLCS) in Appendix E, 1.2.
“SAE 5 W” is a viscosity requirement as set forth in Society of Automotive Engineers (SAE) J300, namely maximum CCS viscosity of 3500 10
−3
Pa.s @−25° C., and minimum kV of 3.8 mm
2
S
−1
@100° C.
Various components of the composition, essential as well is optimal and customary, may react under the conditions of formulation, storage or use; the invention also provides the product obtainable of obtained as a result of any such reaction.
The features of the invention will now be discussed in more detail as follows:
Metal Salt
Processes for the manufacture of metal detergents used in the present invention are known to those skilled in the art. The concentration of metal salt is preferable no lower than 3 or 4, or 5, more preferably between 8 and 13, mmol per kg oil. The metal detergent typically has a metal: metal salt molar ration between 1 to 10. Examples of metal detergents that may be used in accordance with the invention include calcium or magnesium alkyl salicylates, preferably C
14-24
alkyl salicylates. The total base number (TBN) of a salicylate detergent, if used, measured by ASTM D2896, is preferably 50 to 450 such as 80 to 450.
Lubricating Oil Base Stock
This may be mineral or synthetic or both.
The improved viscosity control achieved by the present invention is further enhanced if the oil of lubricating viscosity (or base stock), used in the manufacture of the composi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lubricating oil compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lubricating oil compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lubricating oil compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3232415

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.