Lubricants containing ashless antiwear-dispersant additive...

Solid anti-friction devices – materials therefor – lubricant or se – Lubricants or separants for moving solid surfaces and... – Heterocyclic ring compound; a heterocyclic ring is one...

Reissue Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S256000, C525S259000, C525S349000

Reissue Patent

active

RE037105

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to lubricants, especially lubricating oils. More particularly, the invention relates to a class of ashless and phosphorus-free antiwear, anti-fatigue, dispersant additives having viscosity index improving credit that are preferably derived from an ethylene-propylene diene modified copolymer (EPDM) and a 2-mercapto-1,3,4-thiadiazole derivative.
2. Description of Related Art
In developing lubricating oils, there have been many attempts to provide additives that impart anti-fatigue, antiwear, and extreme pressure properties to the oils. Also, many additives are known that provide a lubricating oil with dispersancy of sludge. In addition, the formulation of an oil to meet high and low temperature viscosity requirements is critical, and in most cases a viscosity index improver is employed to achieve this goal. Most multifunctional additives of the prior art provide one or two of these features.
Zinc dialkyldithiophosphates (ZDDP) have been used in formulated oils as antiwear additives. However, zinc dialkyldithiophosphates give rise to ash, which contributes to particular matter in automotive exhaust emissions. Regulatory agencies are seeking to reduce emissions of zinc into the environment. In addition, the phosphorus of these compounds is also suspected of limiting the service life of the catalytic converters that are used on cars to reduce pollution. It is important to limit the particulate matter and pollution formed during engine use for toxicological and environmental reasons, but it is also important to maintain the antiwear properties of the lubricating oil.
It is also well-known that internal combustion engines operate under a wide range of temperatures, including low temperature stop-and-go driving service, as well as high-temperature conditions produced by continuous high speed driving. Stop-and-go driving, particularly under cold, damp weather conditions, leads to the formation of sludge in the crankcase and in the oil passages of a gasoline or a diesel engine. This sludge seriously limits the ability of the crankcase engine oil to lubricate the engine effectively. In addition, the sludge, with its entrapped water, tends to contribute to rust formation in the engine. These problems can be aggravated by engine manufacturers' lubrication service recommendations, which typically specify extended oil drain intervals.
Additives that protect engines against sludge formation generally contain nitrogen. These additives are also known as dispersants and/or detergents in the formulation of crankcase lubricating oil compositions. The preparation of many of the known dispersant/detergent compounds is based on the reaction of an alkenylsuccinic acid or anhydride with an amine or polyamine to produce an alkenyl succinimide or an alkenylsuccinamic acid or anhydride as an intermediate. This is advantageous since these products, if not completely reacted with amine or polyamine, can cause rust in an engine. In most cases, to produce an alkenyl succinimide, an intermediate must first be manufactured and then further reacted. Thus, two steps are required in the manufacturing process.
It is common practice to chlorinate the alkenyl group either before or after reaction with the acid anhydride, but prior to reaction with the amine or polyamine, in order to produce a reaction product in which a portion of the amine or polyamine is attached directly to the alkenyl moiety. The thrust of many of these processes is to produce a product having a relatively high level of nitrogen in order to provide improved dispersancy. However, chlorine is an environmentally undesirable by-product of such processes, and it would therefore be advantageous to achieve relatively high levels of nitrogen without the use of chlorine.
Ethylene-propylene copolymers and ethylene-alpha olefin non-conjugated diene copolymers that have been grafted and derivatized to provide valuable properties in lubricating oil compositions are well known.
U.S. Pat. No. 3,522,180 discloses a method for the preparation of an ethylene-propylene copolymer substrate effective as a viscosity index improver for lubricating oils.
U.S. Pat. No. 4,026,809 discloses graft copolymers of a methacrylate ester and an ethylene-propylene-alkylidene norbornene terpolymer as a viscosity index improver for lubricating oils.
U.S. Pat. No. 4,089,794 discloses ethylene copolymers derived from ethylene and one or more C
3
to C
28
alpha olefins solution-grafted with an ethylenically-unsaturated carboxylic acid material followed by a reaction with a polyfunctional material, such as a polyamine, a polyol, or a hydroxylamine that is reactive with the carboxyl groups of the acid.
U.S. Pat. Nos. 4,137,185 and 4,144,181 disclose an oil-soluble, derivatized ethylene copolymer derived from about 2 to 98 wt. percent ethylene, and one or more C
3
to C
28
alpha-olefins, e.g., propylene. These compounds are preferably solution-grafted under an inert atmosphere and at elevated temperatures in the presence of a high-temperature, decomposable free-radical initiator with an ethylenically-unsaturated dicarboxylic acid material. Thereafter, the graft copolymer is reacted with a polyamine having at least two primary amine groups, e.g., an alkylene polyamine such as diethylene triamine, to form carboxyl-grafted polymeric imide, usually maleimide, derivatives. The derivatives are reacted with an anhydride of a C
1
to C
30
hydrocarbyl substituted acid, preferably acetic anhydride, to yield an oil-soluble, stable amide derivative of the polyamine that exhibits minimal viscosity change over an extended period of time. Useful number average molecular weights (M
n
) of the copolymers range from about 700 to 500,000. If the molecular weight is in the range of 10,000 to 500,000, then these copolymers are also useful as multifunctional viscosity index improvers.
U.S. Pat. No. 4,146,489 discloses graft copolymers wherein the backbone polymer is a rubbery, oil-soluble ethylene-propylene copolymer or ethylene-propylene diene modified terpolymer and the graft monomer is a C-vinylpyridine or N-vinylpyrrolidone that imparts dispersant properties to hydrocarbon fuels and combined viscosity index improvement and dispersant properties to lubricating oils for internal combustion engines. The graft copolymers are prepared by intimate admixture of the backbone polymer, monomer to be grafted, and a free radical initiator at a temperature below initiation temperature, followed by a temperature increase to or above the initiation temperature, thus providing a product containing little or no by-product.
U.S. Pat. No. 4,234,435 discloses carboxylic acid acylating agents derived from polyalkenes and a carboxylic reactant having a molecular weight from about 1,300 to 5,000 and having at least 1.3 carboxylic groups per equivalent of polyalkene.
U.S. Pat. No. 4,320,019 discloses a multipurpose lubricating additive prepared by the reaction of an interpolymer of ethylene and a C
1
to C
8
alpha-monoolefin with an olefinic carboxylic acid acylating agent to form an acylating reaction intermediate that is then reacted with an amine.
U.S. Pat. No. 4,340,689 discloses a process for grafting a functional organic group onto an ethylene copolymer or an ethylene-propylene-diene terpolymer.
U.S. Pat. No. 4,357,250 discloses a reaction product of a copolymer and an olefin carboxylic acid via the “ene” reaction followed by a reaction with monoamine-polyamine mixture.
U.S. Pat. No. 4,382,007 discloses a dispersant-viscosity index improver prepared by reacting a polyamine-derived dispersant with an oxidized ethylene-propylene polymer or an ethylene-propylene-diene terpolymer.
U.S. Pat. No. 4,668,834 discloses low molecular weight copolymers comprised of ethylene, an alphaolefin and, optionally, a nonconjugated polyene, which copolymers have a viscosity index of at least about 75 and vinylidene-type unsaturation. The copolymers are said to possess unexpected advantages as intermediates in epoxy-grafted electrical encapsulation

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lubricants containing ashless antiwear-dispersant additive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lubricants containing ashless antiwear-dispersant additive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lubricants containing ashless antiwear-dispersant additive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2529946

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.