Lubricant composition

Solid anti-friction devices – materials therefor – lubricant or se – Lubricants or separants for moving solid surfaces and... – Organic -co- compound

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C508S518000, C508S519000, C072S042000

Reexamination Certificate

active

06525006

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a lubricant composition, which can widely be applied to metal processing such as cutting, grinding and plastic working.
As cutting oils widely used in the fields of, for instance, cutting and grinding working, there have been known a water-insoluble cutting oil composition, which mainly comprises a mineral oil, and water-soluble cutting oil composition, which comprises, for instance, a mineral oil, a surfactant and an organic amine compound and which is diluted prior to the practical use.
Regarding the cutting oil composition, there has recently been desired for the development of an oil composition, which is mild to the earth environment and can further withstand the long-term service, as compared with conventional cutting oil compositions from the recent viewpoint of the saving of natural resources and the prevention of the earth environmental pollution.
As an example of such techniques, there has been used a synthetic metal-processing oil composition, which is free of any mineral oil, for the purpose of the clarification of working environment. Such a synthetic metal-processing oil composition is advantageous in that it can maintain the transparency thereof even after the dilution thereof with water and that it has a high resistance to any decomposition or putrefaction. As conventional water-soluble metal-processing oils, there have been known, for instance, a lubricant composition comprising a hydroxy carboxylic acid-oxyalkylene adduct (see Japanese Un-Examined Patent Publication (hereunder referred to as “J. P. KOKAI”) No. Hei 6-100875) and a water-soluble cutting oil composition (see J.P. KOKAI No. Hei 8-239683).
However, these conventionally known synthetic metal-processing oil compositions suffer from a problem such that they cannot, in general, be favorably used in the processing, which requires an extremely high lubricating action, such as form-rolling tap and deep hole boring.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a lubricant composition, which shows excellent processing characteristics when it is used as a lubricating agent for metal-processing including cutting and grinding, which is stable and can maintain its transparency even after the dilution with water, which is excellent in the resistance to decomposition or putrefaction and which does not adversely affect the environment.
The inventors of this invention have conducted various investigations, have found that a lubricating agent highly resistant to decomposition or putrefaction and accordingly suitably used in the form rolling tap and deep hole boring by the incorporation of a specific carboxylic acid or its salt and a specific synthetic oil into a lubricating agent and have thus completed the present invention.
According to the present invention, there is provided a lubricant composition, which comprises (1) at least one member selected from the group consisting of carboxylic acid compounds each obtained by the addition of an oxyalkylene group to a hydroxyl group of a hydroxy carboxylic acid and alkali metal salts and amine salts thereof; and (2) at least one base oil selected from the group consisting of alkyl benzene, normal paraffin, isoparaffin and &agr;-olefin.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The compound used in the lubricant composition of the present invention as the component (1) is at least one member selected from the group consisting of carboxylic acid compounds each obtained by the addition of an oxyalkylene group to a hydroxyl group of a hydroxy carboxylic acid, which carries at least one hydroxyl group and at least one carboxyl group, and alkali metal salts and amine salts thereof.
The hydroxy carboxylic acid used in the present invention may be a saturated or unsaturated one and preferably has 7 to 26 carbon atoms. Examples of such hydroxy carboxylic acids are aliphatic hydroxy carboxylic acids and aromatic hydroxy carboxylic acids.
Specific examples of the aliphatic hydroxy carboxylic acids are monohydroxy monocarboxylic acids such as hydroxy pelargonic acid, hydroxy capric acid, hydroxy lauric acid, hydroxy myristic acid, hydroxy palmitic acid, hydroxy stearic acid, hydroxy arachic acid, hydroxy behenic acid, ricinoleic acid and hydroxy octadecenoic acid; monohydroxy dicarboxylic acids such as hydroxy sebacic acid and hydroxy octyldecane diacid; monohydroxy tricarboxylic acid such as norcaperatic acid and agaricic acid; dihydroxy monocarboxylic acids such as ipurolic acid, dihydroxy hexadecanoic acid, dihydroxy stearic acid, dihydroxy octadecenoic acid and dihydroxy octadecane dienoic acid; dihydroxy dicarboxylic acids such as dihydroxy dodecane diacid, dihydroxy hexadecane diacid, furoic acid and dihydroxy hexacosane diacid; trihydroxy monocarboxylic acids such as trihydroxy hexadecanoic acid (ustic acid-B) and trnhydioxy octadecanoic acid; and tetrahydroxy monocarboxylic acid such as tetrahydroxy octadecanoic acid. In addition, specific examples thereof also include castor oil fatty acids derived from naturally occurring oils and fats and hardened castor oil fatty acids.
In addition, specific examples of aromatic hydroxy carboxylic acids include hydroxy benzoic acid, dihydroxy benzoic acid, trihydroxy benzoic acid, hydroxy methyl benzoic acid, hydroxy dimethyl benzoic acid, hydroxy isopropyl benzoic acid, hydroxy isopropyl methyl benzoic acid, dihydroxy methyl benzoic acid, hydroxy phthalic acid, dihydroxy phthalic acid, trihydroxy phthalic acid, hydroxy isophthalic acid, dihydroxy isophthalic acid, trihydroxy isophthalic acid, hydroxy methyl isophthalic acid, hydroxy terephthalic acid, dihydroxy terephthalic acid, divaric acid, olivetol carboxylic acid and spherophoruric carboxylic acid.
The oxyalkylene group may preferably be oxyethylene group, oxypropylene group or mixed oxyethylene and oxypropylene groups and the molar number of the added oxyalkylene groups preferably ranges from 1 to 200 and more preferably 1 to 50.
Examples of alkali metal salts are sodium, potassium and lithium salts. For instance, the alkali metal salt may be a salt of a carboxylic acid compound obtained through a saponification reaction of an oxyalkylene adduct of castor oil.
Examples of amines constituting the amine salts include diethanolamine, tri eth anolamine, monoisoprop anolamine, triisopropanolamine, methyl diethanolamine, dimethyl ethanolamine, 2-amino-2-methyl-1-propanol, 2-(2-aminoethoxy) ethanol, diethyl monoisopropanolamine, N,N-dibutylamino-ethanol, N,N-di-n-butylamino-isopropanol, N,N-di-n-propylamino-isoprop anol, N,N-di-t-butyl diethanolamine, N,N-ethylenediamine (diisoprop anol), N ,N-ethylenediamine (diethanol), mono-n-butyl di-ethanolamine, monoethyl diisopropanolamine and 2-amino-2-methyl ethanol.
As the alkylbenzene used in the lubricant composition of the present invention as the component (2), there may be listed, for instance, monoalkylbenzenes (having a molecular weight ranging from 218 to 274) and dialkylbenzenes (having a molecular weight ranging from 358 to 470) each carrying an alkyl group having 10 to 14 (about 12) carbon atoms and specific examples thereof are decylbenzene, undecylbenzene, dodecylbenzene, tridecylbenzene, di-decylbenzene, di-undecylbenzene, di-dodecyl-benzene and di-tridecylbenzene.
The normal paraffins usable herein may be, for instance, those having about 12 to 14 carbon atoms (having a molecular weight ranging from 170 to 198) and specific examples thereof include decane, undecane, dodecane, tridecane and tetradecane. The isoparaffins usable herein may be, for instance, those carrying about 12 to 14 carbon atoms (having a molecular weight ranging from 170 to 198 and specific examples thereof are isodecane, isoundecane, isododecane, isotridecane and isotetradecane. The &agr;-olefin usable herein may be, for instance, those having about 12 to 14 carbon atoms (having a molecular weight ranging from 168 to 196) and specific examples thereof are decene, undecene, dodecene, tridecene and tetradecene.
In the lubricant composition of the present in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lubricant composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lubricant composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lubricant composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3181393

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.