Lowly heat-expandable laminate

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Including a second component containing structurally defined...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S220000, C428S292100, C428S327000, C428S332000, C428S359000, C428S372000, C428S403000, C428S401000

Reexamination Certificate

active

06815053

ABSTRACT:

TECHNICAL FIELD
This application is a 371 of PCT/JP01/02382 filed Mar. 23, 2001.
The present invention relates to a laminated plate having a low thermal expansion and excellent toughness, heat resistance and water resistance, particularly to a composite laminated plate.
BACKGROUND ART
A cured article of a radically polymerizable resin such as unsaturated polyester resins or vinyl ester resins has a well-balanced performance with regard to the mechanical, chemical and electric characteristics, and has been employed widely in the fields of housing, shipping and automobile industries.
However, a cured article of such a radically polymerizable resin, when it is applied to a laminated plate for a print circuit board or a insulating plate while utilizing its excellent heat resistance, water resistance and electric characteristics, poses an insufficiency of the toughness and the impact resistance for the plate and undergoes problematic cracking or delamination between the fiber-reinforced layers during a punching process.
In an attempt to overcome such a problem, a liquid rubber component is added to the resin for enhancement of toughness, but a cured article of the resin containing a rubber component has a high thermal expansion rate, which is not always suitable for a laminated plate used under elevated temperature.
Accordingly, for the purpose of minimizing the thermal expansion rate of a cured article, a method was proposed in which a polymer fine particle is added to a radically polymerizable resin as disclosed in Japanese Patent Application Laid-open No.231654 (1996).
In this method, however, a large amount of the polymer fine particle should be added to the resin in order to obtain a sufficiently reduced thermal expansion. Unfortunately, such addition of the large amount of the polymer fine particle leads to an increase in the viscosity of the resin and the composition thereof, resulting in a new problem, which is a difficulty in producing the resin composition by a conventional method and apparatus.
An objective of the present invention is to provide a laminated plate, especially a composite laminated plate, which is obtained from a resin composition whose main component is a radically polymerizable resin, which has excellent toughness, heat resistance and water resistance, which has such a low thermal expansion rate as a average linear expansion coefficient (10
−6
/° C.) of not higher than 20 within the temperature range from 40 to 150° C., which can be processed and used at an elevated temperature, and which can be produced at a lower cost but can exert a performance comparable with a conventional expensive material such as an epoxy resin.
DISCLOSURE OF INVENTION
We made an effort to solve the problems described above, and discovered that a laminated plate obtained from a resin composition comprising a radical polymerizing resin combined with a specific amount of a thermoplastic resin can solve the problems described above, and then made a further effort to establish the present invention.
Thus, the present invention is:
1. A low thermal expansion laminated plate obtained by curing a laminated material of fiber-reinforced layers impregnated with a thermosetting resin composition comprising (a) a radically polymerizable resin, (b) a thermoplastic resin, (c) a radically polymerizable monomer and (d) an inorganic filler, wherein (a) is present in an amount of 10 to 75 parts by weight, (b) is present in an amount of 2 to 30 parts by weight, (c) is present in an amount of 20 to 60 parts by weight and (d) is present in an amount of 5 to 250 parts by weight, based on 100 parts by weight of the total weight of (a), (b) and (c).
2. A low thermal expansion laminated plate according to the above-mentioned 1 wherein the average linear expansion coefficient of the laminate within the temperature range from 40° C. to 150° C. is not higher than 20×10
−6
/° C.
3. A low thermal expansion laminated plate according to the above-mentioned 1 or 2 wherein the glass transition point of the thermoplastic resin (b) is not higher than 60° C.
4. A low thermal expansion laminated plate according to the above-mentioned 1 or 2 wherein the thermoplastic resin (b) is a saturated polyester resin whose glass transition point is not higher than 60° C.
5. A low thermal expansion laminated plate according to the above-mentioned 1 or 2 wherein the thermoplastic resin (b) is a saturated polyester resin whose glass transition point is not higher than 60° C. and whose number average molecular weight is 2,000 to 100,000.
6. A low thermal expansion laminated plate according to any one of the above-mentioned 1 to 5 further comprising a polymer fine particle (e) whose particle size is 0.1 to 5.0 &mgr;m.
7. A low thermal expansion laminated plate according to any one of the above-mentioned 1 to 6 wherein the laminated material of the fiber-reinforced layers is a composite laminated material comprising as a surface layer a glass fiber woven fabric impregnated with a thermosetting resin composition laminated with an inner lining layer which is a glass fiber non-woven fabric impregnated with a thermoplastic resin composition.
8. A low thermal expansion laminated plate according to any one of the above-mentioned 1 to 7 wherein the radically polymerizable resin (a) is a vinyl ester resin or unsaturated polyester resin.
9. A metal foil-covered laminated plate utilizing a low thermal expansion laminated plate according to any one of the above-mentioned 1 to 8.
While a radically polymerizable resin (a) employed in the present invention is not particularly limited as long as it is a resin having an ethylenically unsaturated bond, those employed preferably are a vinyl ester resins produced by adding ethylenically unsaturated monobasic acid to an epoxy resin and an unsaturated polyester resin produced by a dehydration condensation reaction between a dicarboxylic acid which should contain an &agr;,&bgr;-olefinic unsaturated dicarboxylic acid or an anhydride thereof and a diol.
The epoxy resin as a starting material for a vinyl ester resin may for example be those disclosed in Japanese Patent Application Laid-open No.110948 (1997), such as a bisphenol epoxy resin including bisphenol A and bisphenol F, a novolac epoxy resin including phenol novolac [e.g., YDPN638, produced by TOTO KASEI CO. LTD., epoxy equivalent: 200] and cresol novolac [e.g., YDCN702P, produced by TOTO KASEI CO. LTD., epoxy equivalent: 200], an aliphatic epoxy resin, a nitrogen-containing epoxy resin (e.g., triglycidyl isocyanurate), a copolymeric epoxy resin and the like.
An ethylenically unsaturated monobasic acid may for example be an unsaturated monocarboxylic acid such as (meth)acrylic acid as well as a reaction product between a polybasic acid anhydride and a compound having at least one (meth)acrylic double bond and an alcoholic OH group simultaneously in one molecule.
A compound having at least one (meth)acrylic double bond and an alcoholic OH group simultaneously may for example be a reaction product between hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, pentaerythritol tri (meth)acrylate, glycerin di (meth)acrylate, (meth) acrylic acid and a polyhydric alcohol. Among those listed above, (meth)acrylic acid is preferred.
The reaction between an epoxy resin and an ethylenically unsaturated monobasic acid described above may be conducted by a known method. For example, the reaction is conducted at 80 to 150° C. for 1 to 20 hours in the presence of a polymerization inhibitor such as hydroquinone and a catalyst such as a tertiary amine e.g., benzyldimethylamine or a phosphorus compound e.g., triphenylphosphine, whereby obtaining an intended vinyl ester resin.
While the reaction between the epoxy group and the carboxyl group in the vinyl estrification reaction is a 1 to 1 equivalent reaction, the synthesis may sometimes be conducted also with an excess of the epoxy group or with an excess of the carboxyl group.
An unsaturated polyester resin employed in the present invention can be

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lowly heat-expandable laminate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lowly heat-expandable laminate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lowly heat-expandable laminate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3356617

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.