Land vehicles – Wheeled – Running gear
Reexamination Certificate
2000-11-29
2002-09-10
Dickson, Paul N. (Department: 3616)
Land vehicles
Wheeled
Running gear
C280S124134
Reexamination Certificate
active
06446991
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates generally to automobile suspension systems, and more particularly to a lower control arm adjustment system for an automobile.
BACKGROUND AND SUMMARY OF THE INVENTION
If a vehicle's axles were bolted directly to its frame or body, every rough spot in the road would transmit a jarring force throughout the vehicle. Riding would be uncomfortable, and handling at freeway speeds would be impossible. The fact that the modern vehicle rides and handles well is a direct result of a suspension system.
Even though the tires and wheels must follow the road contour, the body should be influenced as little as possible. The purpose of any suspension system is to allow the vehicle to travel forward with a minimum amount of up-and-down movement. The suspension should also permit the vehicle to make turns without excessive body roll or tire skidding.
As part of a conventional suspension system, all vehicles have either control arms or struts to keep the wheel assembly in the proper position. The control arms (i.e., upper and lower) and struts allow the wheel to move up and down while preventing it from moving in any other direction. The wheel will tend to move in undesirable directions whenever the vehicle is accelerated, braked, or turned. Vehicle suspensions may have control arms only or a combination of control arms and struts.
Typically, control arms are generally configured in a V-shape design with a pair of pivot arms (i.e., front and rear attachment points) pivotally mounted to a surface of the vehicle frame with brackets and associated bushings, with the apex of the control arm being mounted to the spindle via a ball joint, or like assembly. The front and rear attachment points pivot on the rubber bushings. The attachment points absorb the tendency of the control arm to move forward and rearward as the wheel moves. The control arm design keeps the wheel from moving inward and outward.
By designing the upper and lower control arms carefully, it is possible to have a suspension system that allows the wheel to move up and down while causing it to remain in the straight up and down position. The upper and lower control arms move through different arcs, keeping the outer pivot points in alignment. This improves handling over bumps.
Accordingly, it is necessary to ensure that the pivot points remain in proper alignment or else the suspension system performance can be compromised. Typically, the alignment is accomplished through adjusting the position of the control arm relative to its respective bracket.
A more complete description of suspension systems in general, and adjustment systems for the various components of suspension systems in particular, can be found in the following U.S. patents, the entire disclosures of which are incorporated herein by reference:
U.S. Pat. No. 2,855,212 to Houser discloses independently suspending the axles of a vehicle on rubber torsion springs while providing for independent adjustment of the spring means.
U.S. Pat. No. 3,124,370 to Traugott discloses automotive vehicles of the type wherein the front wheels are independently suspended from the vehicle frame, these types of assemblies generally employing upper and lower control arms, which are pivotally connected at their inner ends to the vehicle frame, the outer ends of the control arms supporting the wheel spindle assembly.
U.S. Pat. No. 4,616,845 to Pettibone discloses a toe adjustment assembly for adjusting the toe in the rear wheels of a vehicle having an independent rear suspension including: a cam device operatively associated with a lateral control arm, a slot provided in fixed relationship with the vehicle frame, and, cam engaging surfaces associated with the slot.
U.S. Pat. No. 4,736,964 Specktor discloses an apparatus for guarding against accidental displacement of two members of an automotive vehicle, after an adjustment of an alignment characteristic has been made, involving the use of cams which are used to adjust the alignment characteristic and which have prongs which are pressed into the adjacent surfaces of a member of the suspension system.
U.S. Pat. No. 4,754,991 to Jordan discloses a method and buffer apparatus for preventing corrosion in a dynamic load bearing assembly.
U.S. Pat. No. 4,869,527 to Coddens discloses a vehicle wheel alignment device for adjusting the camber of a wheel carried at one end of a lateral suspension member, such as an I-beam of a twin I-beam suspension.
U.S. Pat. No. 5,052,711 to Pirkey et al. discloses a method and apparatus for factory pre-aligning vehicle wheels and for subsequently realigning the vehicle wheels after usage and for verifying such re-alignment.
U.S. Pat. No. 5,284,353 to Shinji et al. discloses an independent suspension for use in a front wheel or a rear wheel of an automobile.
U.S. Pat. No. 5,286,052 to Lukianov discloses a double wishbone suspension system for a motor vehicle which achieves reduced roll center movement and wheel camber change relative to the vehicle body in jounce and rebound of the vehicle wheels throughout their suspension travel while requiring minimal packaging space.
U.S. Pat. No. 5,301,977 to Schlosser et al. discloses an adjustment system for providing toe and/or camber adjustment for a normally fixed wheel of a vehicle using a plate member, in conjunction with portions of the structures of the suspension system of the vehicle, to locate at least one center point for the formation of new aligned openings so that a portion of the control system may be moved from an original location and secured at a new location to provide for the toe and/or camber adjustment.
U.S. Pat. No. 5,332,255 to Velazquez discloses a heavy duty front suspension system especially for passenger buses includes square rubber torque springs supported by a spring frame assembly.
U.S. Pat. No. 5,775,719 to Holden discloses a control arm adjustment mechanism including a frame bracket connected to a vehicle frame with a bolt extending through the frame bracket.
U.S. Pat. No. 5,826,894 to McDonald et al. discloses a toe adjustment assembly including a frame and a pair of lateral links pivotally mounted to the frame. A bore is formed in at least one of the links.
U.S. Pat. No. 5,839,742 to Holt discloses a suspension system with a contained force system which concentrates loads in the suspension geometry control elements.
U.S. Pat. No. 5,967,536 to Spivey et al. discloses a system and method for converting stock MacPherson strut suspension systems for a host automobile to a double A-arm type of suspension system using only stock or pre-existing mounting locations and only ordinary hand tools.
U.S. Pat. No. 6,003,886 to Kiesel discloses a rear lateral arm for lowering the body of a vehicle which includes a mechanism which can be adjusted to compensate for the excessive negative camber associated with such lowering.
Although conventional adjustment systems have aided somewhat in facilitating the adjustment of lower control arms in general, they have several disadvantages. Initially, the packaging area for these types of systems is relatively large. Second, their installation is rather labor-intensive, thus increasing manufacturing costs as well as the chances for defects, such as weld failures and misalignment. Third, these systems are rather complex to understand and master, and therefore, the potential for operator error in significant.
Therefore, there exists a need for a lower control arm adjustment system that is inexpensive to manufacture, simple to operate, and is easily integrated into the vehicle's suspension system.
Accordingly, at least one of the objects of the present invention is to provide such a lower control arm adjustment system.
In accordance with one embodiment of the present invention, a lower control arm adjustment system for an automobile suspension system is provided, comprising:
a lower control arm member, the lower control arm member having a substantially U-shaped member formed on a surface thereof, the U-shaped member having an area definin
DaimlerChrysler Corporation
Dickson Paul N.
Dunn David R.
Smith Ralph E.
LandOfFree
Lower control arm adjustment system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Lower control arm adjustment system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lower control arm adjustment system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2832606