Fuel and related compositions – Coal treating process or product thereof
Reexamination Certificate
2002-07-30
2004-08-10
Toomer, Cephia D. (Department: 1714)
Fuel and related compositions
Coal treating process or product thereof
C075S746000, C110S344000
Reexamination Certificate
active
06773471
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to coal additives for furnaces and specifically to coal additives for slag-type furnaces.
BACKGROUND OF THE INVENTION
Coal is widely recognized as an inexpensive energy source for utilities. Coal-fired furnaces are used to generate steam for power production and industrial processes. Coal-fired furnaces have many different configurations and typically include a plurality of combustors. In one furnace configuration, a slag layer forms on a surface of the burner and captures the coal particles for combustion. Such a furnace will be hereafter referred to as a “slag type furnace.”
An example of a combustor
100
for a slag-type furnace is depicted in FIG.
1
. The depicted combustor design is used in a cyclone furnace of the type manufactured by Babcock and Wilcox. Cyclone furnaces operate by maintaining a sticky or viscous layer of liquid (melted) ash (or slag) (not shown) on the inside cylindrical walls
104
of the cyclone combustion chamber
108
. Coal is finely crushed (e.g., to minus ¼ inch top size), entrained in an airstream, and blown into the combustor end
112
of the cyclone combustor or combustor
100
through coal inlet
116
. Combustion air (shown as primary air
120
, secondary air
124
, and tertiary air
128
) is injected into the combustion chamber
108
to aide in combustion of the coal. The whirling motion of the combustion air (hence the name “cyclone”) in the chamber
108
propels the coal forward toward the furnace walls
104
where the coal is trapped and bums in a layer of slag (not shown) coating the walls. The re-entrant throat
140
(which restricts escape of the slag from the chamber
108
via slag tap opening
144
) ensures that the coal particles have a sufficient residence time in the chamber
108
for complete combustion. The slag and other combustion products exit the chamber
108
through the slag tap opening
144
at the opposite end from where the coal was introduced. The molten slag (not shown) removed from the chamber
108
flows to a hole (not shown) in the bottom of the boiler where the slag is water-quenched and recovered as a saleable byproduct. The ash composition is important to prevent the slag from freezing in the hole and causing pluggage. To melt ash into slag at normal combustion temperatures (e.g., from about 2600 to about 3000° F.), slag-type furnaces, such as cyclones, are designed to burn coals whose ash contains high amounts of iron and low amounts of alkali and alkaline earth metals (as can be seen from FIG.
2
). Iron both reduces the melting temperature of the ash and increases the slag viscosity at these temperatures due to the presence of iron aluminosilicate crystals in the melt.
High sulfur content in coal, particularly coals from the eastern United States, has allegedly caused significant environmental damage due to the formation of sulfur dioxide gas. As a result, utilities are turning to low sulfur western coals, particularly coals from the Powder River Basin, as a primary feed material. As used herein, “high sulfur coals” refer to coals having a total sulfur content of at least about 1.5 wt. % (dry basis of the coal) while “low sulfur coals” refer to coals having a total sulfur content of less than about 1.5 wt. % (dry basis of the coal) and “high iron coals” refer to coals having a total iron content of at least about 10 wt. % (dry basis of the ash) while “low iron coals” refer to coals having a total iron content of less than about 10 wt. % (dry basis of the ash). As will be appreciated, iron and sulfur are typically present in coal in the form of ferrous or ferric carbonites and/or sulfides, such as iron pyrite.
The transition from high sulfur (and high iron) to low sulfur (and low iron) coals has created many problems for slag-type coal furnaces such as cyclone furnaces. When low-sulfur western coals, with low iron and high (i.e., at least about 20 wt. % (dry basis of the ash)) alkali (e.g., calcium) contents, are fired in these boilers, the viscosity of the slag is too low, causing less retained bottom ash (or a higher amount of entrained coal and ash particulates in the offgas from combustion), degraded performance of particulate collectors (due to the increased particulate load) and therefore a higher incidence of stack opacity violations and increased fuel and maintenance costs, less reliable slag tapping, the occurrence of flames in the main furnace, high furnace exit temperatures (or sprays), and increased convective pass fouling. As shown in
FIG. 3
, in the operating range noted above high sulfur coals (denoted as Illinois coal) form slag having a moderate to high viscosity and therefore produce a relatively thick slag layer on the surface of the furnace while low sulfur coals (denoted as PRB coals) form a slag having a very low viscosity and therefore produce thin, low viscosity slag layers. As a result, utilities using slag-type furnaces, such as cyclone furnaces, have, through switching feed materials, realized lower sulfur dioxide emissions but at the same time have produced a host of new operational problems.
Techniques that have been employed to provide improved slag characteristics for high sulfur eastern coals have proven largely ineffective for low sulfur coals. For example, limestone has been used by utilities as a high sulfur coal additive to adjust the slag viscosity to the desired range for the furnace operating temperature. The calcium in the limestone is widely believed to be the primary reason for the improved performance. Low sulfur western coals, in contrast, already have relatively high calcium contents and therefore experience little, if any, viscosity adjustment when limestone is added to the coal feed to the furnace.
Another possible solution is the addition of iron pellets (which typically include at least predominantly nonoxidized iron) to the furnace to assist in slag formation and coal combustion. Iron oxide fluxes high-silica glass, while reduced forms of iron (FeO or Fe-metal) flux calcium-rich glass. In the presence of burning coal particles, iron exists primary in reduced form. The use of iron has been recommended to solve slag-tapping problems in cyclone furnaces by adding commercially available iron pellets, which are very expensive. The pellets have a further disadvantage of forming pools of reduced iron that can be very corrosive to metal or refractory surfaces exposed to the iron and/or of being an ineffective fluxing agent. Therefore, iron fluxes have failed to achieve long term acceptance in the utility industry.
Another possible solution is to blend high iron coals with the western coals to increase the iron content of the coal feed. Blended coals are far from a perfect solution. High iron coals (or “kicker” coals) are often much more expensive coals than western coals. High iron coals also have high sulfur levels because the predominant form of iron in such coals is iron sulfide (or iron pyrite). Blended coals suffer from increased operating costs and increased sulfur dioxide emissions, which can in certain cases exceed applicable regulations.
Another possible solution is to grind the coal going into the cyclone furnace much finer and supply additional air to increase the percentage of combustion that occurs for coal particles in flight. This option requires expensive modifications or replacement of grinding equipment and is counter to the original design and intent of the cyclone furnace. The technique further decreases boiler efficiency and increases the auxiliary power required to operate the boiler. The use of fine grinding has thus proven to be an inadequate solution to the problem in most cases.
SUMMARY OF THE INVENTION
The various methods and compositions of the present invention can provide a fluxing agent or additive that can be contacted with the coal feed to or in a combustion chamber of a furnace to produce a slag layer having one or more desirable characteristics, such as viscosity and thickness. The methods and compositions are particularly effective for a cyclone furnace of the ty
Comer John Philip
Johnson Stephen Allen
Wurster John
ADA Environmental Solutions LLC
Sheridan & Ross P.C.
Toomer Cephia D.
LandOfFree
Low sulfur coal additive for improved furnace operation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Low sulfur coal additive for improved furnace operation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low sulfur coal additive for improved furnace operation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3316545