Low shrinkage thermosetting resin compositions and methods...

Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C560S138000

Reexamination Certificate

active

06620946

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to thermosetting resin compositions and uses therefor. In particular, the present invention relates to compositions with markedly reduced shrinkage upon cure, thereby providing improved performance in adhesion applications. In a particular aspect, the present invention relates to die attach compositions useful for attaching semiconductor devices to carrier substrates.
BACKGROUND OF THE INVENTION
Thermosetting resins are commonly used in adhesive formulations due to the outstanding performance properties which can be achieved by forming a fully crosslinked (i.e., thermoset), three-dimensional network. These properties include cohesive bond strength, resistance to thermal and oxidative damage, and low moisture uptake. As a result, common thermosetting resins such as epoxy resins, bismaleimide resins, and cyanate ester resins have been employed extensively in applications ranging from structural adhesives (e.g., construction and aerospace applications) to microelectronics (e.g., die-attach and underfill applications).
Although thermosetting resins have been used successfully as adhesives in a variety of industries, a property inherent to all thermosetting resins which negatively impacts adhesion performance is shrinkage upon cure. This phenomenon is attributed to the formation of a three-dimensional, covalently crosslinked network during cure, which reduces intermolecular distances between the monomers used to form the crosslinked network. For example, before cure, the molecules which comprise the resin are separated by their characteristic van der Waal's radii. Upon cure, these intermolecular distances are reduced due to the formation of covalent bonds between monomers which produces the desired highly crosslinked thermoset material. This reduction of intermolecular distances creates internal stress throughout the thermoset network, which is manifested by reduced adhesion of the thermoset material to both the substrate and the object attached thereto.
It is well established that thermosetting monomers which cure via ring-opening chemistry (e.g., epoxies, benzoxazines) or ring-formation chemistry (e.g., cyanate esters) have reduced cure shrinkage. Ring-opening cure chemistry is advantageous since this physical transformation helps diminish volumetric shrinkage on cure. Similarly, ring-formation cure chemistry acts to reduce shrinkage due to the slight expansion which occurs upon ring-formation (much like that which occurs when water freezes to form ice crystals). Accordingly, epoxies, benzoxazines and cyanate esters all have excellent adhesive properties—presumably due to their diminished cure shrinkage. However, virtually all free-radically polymerized monomers do not participate in ring-opening or ring-forming reactions and therefore often exhibit severe cure shrinkage.
Strategies have been developed to address the problem of shrinkage upon cure. Common approaches include the addition of an inorganic filler to the adhesive formulation, and/or the use of a higher molecular weight thermosetting material. However, both of these strategies undesirably increase the viscosity of the final adhesive formulation. Accordingly, there remains a need for low shrinkage upon cure thermosetting resin compositions which do not detract from the properties of the adhesive formulation, in either its cured on uncured state, or its cure profile.
SUMMARY OF THE INVENTION
In accordance with the present invention, there are provided thermosetting resin compositions with a reduced propensity to shrink in volume upon cure and methods of use therefor. The compositions of the present invention include compounds having aromatic, rigid-rod like spacer groups between the crosslinkable moieties. As such, these compounds impart a degree of liquid crystal-like character to the thermosetting resin composition which results in lower shrinkage upon cure. This effect follows from the well-known expansion that occurs when liquid crystal-like materials pass from a nematic liquid crystal-like state to an isotropic state. Further provided by the present invention are low shrinkage formulations containing invention compounds and methods of use therefor.


REFERENCES:
patent: 5723066 (1998-03-01), Coates et al.
patent: 6229020 (2001-05-01), Shiono

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low shrinkage thermosetting resin compositions and methods... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low shrinkage thermosetting resin compositions and methods..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low shrinkage thermosetting resin compositions and methods... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3060755

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.