Communications: radio wave antennas – Antennas – Balanced doublet - centerfed
Reexamination Certificate
2000-12-14
2003-01-21
Phan, Tho (Department: 2821)
Communications: radio wave antennas
Antennas
Balanced doublet - centerfed
C343S7000MS, C343S702000, C343S795000
Reexamination Certificate
active
06509882
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to an antenna assembly suitable for wireless transmission of analog and/or digital data, and more particularly to a highly compact broadband antenna assembly having a low specific absorption rate for use with wireless communication devices.
BACKGROUND OF THE INVENTION
There are a variety of antennas which are currently used in wireless communication devices. One type of antenna is an external half wave single or multi-band dipole. This antenna typically extends or is extensible from the body of a wireless communication device in a linear fashion during normal operation. Because of the physical configuration of this type of antenna, it is relatively insensitive to directional signal optimization. In other words, it is able to operate in a variety of positions without substantial signal degradation and is considered omni-directional. This means that not only do electromagnetic waves radiate equally toward and away from such an antenna, they also radiate equally toward and away from a user of a wireless communication device equipped with such an antenna. There is essentially no front-to-back ratio (with respect to a wireless communication device) and little or no Specific Absorption Rate (SAR) reduction with this type of antenna. With multi-band versions of this type of antenna, where resonances are achieved through the use of inductor-capacitor (LC) traps, gains of +2 dBi are common.
While this type of antenna is acceptable in some wireless communication devices, it has drawbacks. One significant drawback is that the antenna is external to the body of the communication device. This places the antenna in an exposed position where it may be accidentally or deliberately damaged. Another drawback of increasing importance is due to the inherent omni-directionality of the antenna. That is, that which enables the antenna to operate optimally, may subject a user of a wireless communication device to unacceptable levels of electromagnetic radiation when the device is operated proximate a user.
A related antenna is an external quarter wave single or multi-band asymmetric wire dipole. This antenna operates much like the aforementioned antenna, but requires an additional quarter wave conductor to produce additional resonances and has drawbacks similar to the aforementioned half wave single or multi-band dipole antenna.
Another type of antenna is the internal single or multi band asymmetric dipole. This type of antenna usually features quarter wave resonant conductor traces, which may be located on a planar printed circuit board within the body of a wireless communication device. Such antennas typically operate over one or more frequency ranges with gains of +1-2 dBi. This antenna may include one or more feed points for multiple band operation, and may require a second conductor for additional band resonance.
Yet another antenna is an internal single or multi-band Planar Inverted “F” Antenna (PIFA). This type of antenna features a single or multiple resonant planar conductor that operates over a second conductor or ground plane. With this type of antenna, gains of +1.5 dBi are typical.
Another type of antenna is a patch antenna. The patch antenna is a small, low profile antenna which is useful in wireless communication devices. They typically have operating bandwidths (2:1 Standing Voltage Wave Ratio) on the order of a few percent. The operating bandwidth may be increased by adding parasitic elements. However, the total size of the antenna increases proportionately. The front to back ratio is usually poor unless the ground plane size is also increased. Thus, in creating a patch antenna with a relatively large bandwidth, the primary advantage of the patch antenna is defeated.
Each of these known various antenna structures have limitations, including a decrease in operational efficiency when positioned near a user's head. As a result, there exists a need for a broadband antenna assembly which is compact and lightweight. Yet another need exists for an unitary antenna structure having a wide bandwidth without a separate antenna structure for each transmission and reception band. Still another need exists for an antenna having reduced SAR. There is a need for an antenna assembly which may be incorporated into a variety of wireless communication devices. There is also a need for an antenna assembly with a reduced specific absorption rate.
SUMMARY OF THE INVENTION
A broadband antenna assembly having a low specific absorption rate for use with a wireless communication device. The antenna assembly includes a driven element and parasitic element, operatively connected to a radio frequency input/output port and a ground plane, such as provided by the printed circuit board of the communication device. The driven element may take the form of a first trace on a suitable substrate or take the form of a first body member, while the parasitic element may take the form of a second trace on a suitable substrate or take the form of a second body member. Importantly, the overall length of both the driven and parasitic element is substantially less than ¼&lgr;.
In the first embodiment, the first and second traces are formed on one side of a suitable substrate such as a printed circuit board which is then superposed above a predetermined region of a ground plane by connector members. Generally, the first trace has two ends, with one end having a feed point to which a first connector member is attached, while the second trace has a plurality of segments with ends, with one of the ends having a ground connection point to which a second connector member is attached. The first and second connector members operatively couple the first trace to an input/output port and the second trace to the ground plane, respectively. Preferably, the input/output port is adjacent to and in a fixed position relative to the ground plane to enable the connector members to align and support the substrate and the traces. For optimum operation, the first and second traces are spaced apart from each other by a distance that establishes proper coupling to the frequency band of operation. As a result, a compact high bandwidth antenna is provided.
In the second embodiment of the antenna assembly, the first and second body members are superposed above a predetermined region of a ground plane by connector members. Generally, the first body member has a plurality of segments with one end operatively connected by a first connector member to an input/output port, while the second body member has a plurality of segments and with one end operatively connected by a second connector member to a ground plane. Preferably, the input/output port is adjacent to and in a fixed position relative to the ground plane to enable the first connector member to align and support the first body member. The opposite ends of both the first and second body members includes an arm member which extends toward the ground plane. More specifically, the first and second body members are co-planar with their respective arm members and having roughly the same extension toward the ground plane. Preferably, the second body member comprises two segments which form a predetermined angle with the apex of the angle proximate the first body member. As with the aforementioned first embodiment or form, the first and second body members are spaced from each other by a distance related to the frequency of operation.
In a third embodiment, the first and second body members of the aforementioned second embodiment may be used as a feed system for an auxiliary antenna element, with the auxiliary antenna element comprising a dielectric member and a conductor element. Preferably, the auxiliary antenna element is superposed above and adjacent to the first and second body members of the aforementioned second embodiment. In use, the auxiliary antenna element extends the bandwidth of the first and second body members. In another embodiment, the antenna may be manufactured as a plated or foil conductive material imprinte
Fulbright & Jaworski L.L.P.
Phan Tho
Tyco Electronics Logistics AG
LandOfFree
Low SAR broadband antenna assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Low SAR broadband antenna assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low SAR broadband antenna assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3028731