Low resilience, high ink releasing printing surface

Printing – Printing members – Yielding surface

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C101S368000, C101S395000, C101S401000, C428S909000

Reexamination Certificate

active

06536342

ABSTRACT:

FIELD OF INVENTION
The present invention relates to printing blankets of the type used in offset lithography, and more particularly to the use of a printing blankets having a low-resilience printing surface.
BACKGROUND OF THE INVENTION
An offset printing blanket is used to transfer ink and fountain solution (primarily water) to paper or other substrates from a printing plate on a printing press. It can also serve a similar function in transferring other coatings including, for example, varnishes. As used herein, the term “ink” refers to any printing fluids or coating. Also, the term “printing blanket” as used herein refers to any of the forms that may achieve the same basic function of printing. Printing blankets are typically wrapped around a cylinder and the paper is either sheet feed or fed on a web between the rollers.
The role of a printing blanket is to transfer dots of ink and water films from a printing plate in an offset press to a substrate (typically but not exclusively paper). The surface of the blanket must have a natural affinity (i.e., adhesion) to ink in order to pick up ink from a printing plate. When that ink is then pressed into contact with the substrate, some of the ink comes off of the blanket and wets the surface of the substrate and printing is achieved. Not all of the ink on the blanket is transferred to the substrate due to the natural tendency for the ink closest to the blanket to adhere to the blanket surface.
In this connection, only 30% to 40% of the ink on a blanket will typically transfer to the substrate in printing. That means that some ink remains on the blanket and is over-coated with additional ink on subsequent rotations of the printing press. The ink that stays on the blanket will increase in tack level (i.e., adhesiveness) the longer it stays on the blanket, further limiting the amount of ink that may be transferred to the substrate. This phenomenon typically limits print quality since ink that stays on the blanket is also continuously exposed to water. The water emulsifies the ink in time and may degrade the color brightness of the ink, and also allow it to be printed in areas that were not intended to contain printed images (the non-image area). Also, on each revolution of the printing press the ink left behind on the blanket is exposed to compression and shear forces when pressed against the substrate or against the printing plate. These contact areas are known as “nips.” The longer the ink stays on the surface, therefore, the more opportunity there is to gradually spread or distort the ink, widening the printed dot, and creating a slurring of the print and dot gain.
Offset printing blankets typically have a multi-layer construction that comprises layers of fabric, foam and reinforcing rubber layer(s) (collectively known as the blanket carcass and stabilizing layer) and the topmost layer called the surface layer. Good quality printing is generally dependent on the overall construction or design of the printing blanket as well as the materials and topographical characteristics of the layer used for the printing surface.
The surface layer plays a critical role in transferring the print impression from the lithographic printing plate to the printed substrate and is consequently required to have a good balance of surface wettability and affinity for the oil-based ink and water-based fountain solution used in the lithographic printing. The surface layer must be able to withstand repeated contact with the ink and fountain solutions and must also have good compressibility and resiliency. That is, the blanket must be able to be compressed between the two cylinders, but have sufficient resiliency to return to its original thickness quickly enough to be ready for the next impression. An important property of the blanket is that by its nature and structure it must permit the development of even, uniform printing pressures in order to achieve a quality finished product. Furthermore, the blanket must have a firm, non-extendible base in order that it may be held under tension on the offset cylinder without stretching or becoming distorted in any way.
There are many types of printing blanket designs available including sheets cut from rolls that are then mounted onto a printing press via adhesives or by various clamping mechanisms including but not limited to the use of blanket bars, endless or gapless tubular constructions known generally as “blanket sleeves,” metal backed blankets, etc. All of these designs and uses of blankets must be capable of transferring ink generally printed as small dots with a minimum of blurring of the edges of the dot in order to produce a “sharp” image. Any surface texture to the printing blanket tends to allow the ink to spread on the surface to some degree and reduce the sharp visual appearance of the printed dots or the otherwise straight edges to printed or coated areas. The ideal limit to achieving the sharpest printing would be to use a completely smooth and non-textured surface. However, the inks are required to have a level of tackiness that provides some bonding to the plate, blanket, and substrate to be printed on. This tackiness makes release from an extremely smooth surface more difficult. Release of the ink from the blanket surface is enhanced by increasing the texture (i.e., roughness) of the surface. Increasing surface roughness, however, limits the printing sharpness that can be achieved. Additionally, it is well known in the art that a very smooth surface will create a mottled appearance to “printed solids,” that is printed areas that are meant to have a complete covering of ink. Smooth surfaces generally release ink poorly and unevenly on a microscopic scale. Thus, a textured surface will typically produce a more visually appealing smoother looking printed solid by improving on ink release.
The most common technique in the art that attempts to maximize print quality overall by balancing the desire to produce sharp printed dots and visually appealing solids is by the use of a buffed surface. As used herein, the term “buffed” refers to the surface of a blanket that is finely ground to achieve a micro-textured surface topography that releases ink well but is meant to limit the distortion of the sharp dot edges. Alternative approaches include molding the surface against a casting medium (commonly a release paper) or manufacturing the surface with small holes or ink wells. Both of these techniques are limiting in the quality of the solids printed or in the sharpness of the dot printed. The average roughness (Ra value) of these buffed surfaces is, however, typically 0.5 microns or greater.
It is generally accepted in the art that the surface layer of a printing blanket must be made of a highly resilient material that is ink (and usually fountain solution) receptive. Typically these surfaces are made from a variety of rubber or rubber-like polymeric materials that are formulated along with other features for their ink and water receptivity and resilience. High resilience is viewed as a requirement due to the very small amount of time (micro-seconds) available in a printing nip between blanket and plate or blanket and substrate being printed. It is believed that high resilience provides the physical responsiveness required to allow the blanket surface to quickly conform to the roughness of the printed substrate in particular and to transfer good quality ink dots and solids. Additionally, it is believed that, a low resilience printing layer would require a highly textured surface which then would adversely effect print sharpness. The reasoning is that a highly textured surface would carry a thicker ink film and so compensate for the loss of contact time in the printing nip due to the poor ability of the low resilience printing layer to stay in intimate contact with the printing substrate.
High resiliency of the blanket's printing layer, however, has become a problem with increased demand for higher speed printing. For example, press speeds in offset printing have risen from approximately 1200 ft/min to 30

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low resilience, high ink releasing printing surface does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low resilience, high ink releasing printing surface, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low resilience, high ink releasing printing surface will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3027436

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.