Low profile dual-band conformal antenna

Communications: radio wave antennas – Antennas – With radio cabinet

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C343S7000MS, C343S873000

Reexamination Certificate

active

06603432

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of wireless communication and data transfer devices. More particularly, the present invention relates to a new class of embedded antenna designs offering superior directional performance over at least two radio frequency bands and tolerance for diverse polarization angles for incoming signals regardless of the spatial orientation of the portable wireless communication device into which the antenna is embedded.
BACKGROUND OF THE INVENTION
A variety of prior art antenna designs are currently used in wireless communication devices. One type of well known and used antenna design is an external half wave single or multi-band dipole type and another is the planar inverted-F antenna (PIFA) type.
The first type of antenna typically extends or is extensible from the body of a wireless communication device (WCD) in a linear fashion. While this type of antenna is acceptable for use in conjunction with some WCDs, several drawbacks impede greater acceptance and use of such external half wave single or multi-band dipole antennas. One significant drawback is that the antenna is typically mounted at least partially external to the body of a WCD which places the antenna in an exposed position where it may be accidentally or deliberately damaged, bent, broken, or contaminated. Furthermore, due to the physical configuration of this class of antenna, optimizing performance for a particular directional signal. That is, these types of prior art antennas are relatively insensitive to directional signal optimization or, said another way, these types of prior art antennas can operate in a variety of positions relative to a source signal without substantial signal degradation. This performance characteristic is often known as an “omni-directional” quality, or characteristic, of signal receipt and transmission. This means that electromagnetic waves radiate substantially equally in all directions during transmitting operations. Such prior art antennas also are substantially equally sensitive to receiving signals from any given direction (assuming adequate signal strength). Unfortunately, for a hand held WCD utilizing such a prior art antenna, the antenna radiates electromagnetic radiation equally toward a human user of the WCD equipped with such an antenna.
The second type of antenna known as a PIFA design, is operable in a single frequency band and consists of a rectangular metallic plate resonator element disposed above and parallel to a ground plane with a terminal electrically coupled to a ground plane of reduced electrical potential formed at one comer of the rectangular resonator plate and a communication signal feed terminal along an edge of the rectangular resonator plate closely space from the ground terminal. The rectangular resonator plate often has contiguous side panels bent in the direction of the ground plane. The PIFA is electrically connected to circuitry of the WCD to send and receive communication signals in the form of radio frequency (RF) electromagnetic radiation.
There is essentially no so-called “front-to-back ratio” (with respect to a WCD) and little or no reduction in the specific absorption rate (SAR) with this type of prior art antenna design. For reference, a typical SAR value is usually expressed as follows: 2.7 mw/g at a 0.5 watt transmission power level. For further reference, for multi-band versions of prior art types of antenna, the external half wave single or multi-band dipole antenna (i.e., where resonances are achieved through the use of inductor-capacitor (LC) traps), signal gain on the order of approximately a positive two decibels (+2 dBi) are common and expected.
In addition, due mainly to the inherent shape of such prior art antennas, when operating they are typically primarily sensitive to receiving vertical polarization communication signals and may not adequately respond to communication signals that suffer from polarization rotation due to the effects of passive reflection of the communication signals between source and receiver equipment. Furthermore, such prior art antennas are inherently inadequate in sensitivity to horizontal polarization communication signals.
Another type of prior art antenna useful with portable wireless communication gear is an external quarter wave single or multi-band asymmetric wire dipole. This type of antenna operates much like the aforementioned external half-wavelength dipole antenna, but requires an additional quarter wave conductor to produce additional resonances and, significantly, suffers the same drawbacks as the aforementioned half wave single band, or multi-band, dipole antenna.
Therefore, the present invention recognizes and addresses herein a need in the art of antenna design for a WCD for an antenna assembly which is compact and lightweight; that is less prone to breakage and has no moving parts (which may fail, become bent, and/or misaligned), and, which utilizes the available interior spaces and structure of a WCD to achieve a more compact final configuration.
There is also a need for an antenna assembly which is able to receive and transmit electromagnetic frequencies at one or more preselected operational frequency bands.
There is also a need in the art for a deformable antenna resonator which is equally responsive to a variety of different communication signals having a variety of polarization orientations and emanating to and from diverse directions.
There also exists a need in the art for an antenna assembly which is compact and lightweight and which can receive and transmit electromagnetic signals at one or more discrete frequencies and which antenna assembly can be tuned to one or more frequencies.
SUMMARY OF THE INVENTION
The invention herein taught, fully enabled, described and illustrated in detail herein is a low-profile multiple band antenna assembly for use in a compact wireless communication device (WCD) which meets the shortcomings of the prior art. The inventive antenna assembly of the present invention includes a resonator element comprising a complex substantially hemispherical, or a curving, topography and having a complex set of linear peripheral edges. In addition, the ground terminal location and the signal feed terminal location are not located along an end region of the complex-shaped resonator element, and are preferably disposed closely spaced apart in a central region of the complex-shaped resonator element. In one embodiment of a new class of hybrid-PIFA type designs taught herein, the complex-shaped resonator element comprises a film or layer of electrically conducting material formed on a suitable shaped dielectric substrate. In another embodiment of the present invention, the complex resonator element comprises a metallic member formed into suitable complex shape by traditional metal stamping techniques. In yet another embodiment, the complex-shaped resonator element is formed of electrically conducting resin or polymer materials and may be molded, stamped, or thermally treated and pressed into a desired complex shape.
The resonator element may be shaped in a variety of other ways to create a surface topography having a desired three-dimensional contour as compared to traditional planar PIFA designs. The ground plane comprises an electrically conductive region of reduced electrical potential. The ground plane may disposed as a single layer of conductive material, or may comprise several electrically connected layers of conductive material, and typically is disposed on or within a printed wiring board, or other substrate member, used to support diverse electrical circuitry that affect WCD communication.
Herein, the term “resonator element” shall refer generally to the overall complex surface topography of the complex-shaped conductive material and the term “resonator segments” shall refer to the discrete angular edge portions of said resonator element. Many variations of the resonator element and the resonator segments are possible and useful in practicing the present invention, including a wide variety of discret

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low profile dual-band conformal antenna does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low profile dual-band conformal antenna, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low profile dual-band conformal antenna will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3094380

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.