Electrical connectors – With insulation other than conductor sheath – Plural-contact coupling part
Reexamination Certificate
2000-10-13
2002-05-14
Bradley, P. Austin (Department: 2833)
Electrical connectors
With insulation other than conductor sheath
Plural-contact coupling part
C439S131000
Reexamination Certificate
active
06386922
ABSTRACT:
BACKGROUND OF THE INVENTION
1. The Field of the Invention
The present invention relates to electrical interface connections. More particularly, it relates to media connectors configured to couple with a physical/electrical media plug.
2. Related Technology
The field of data transmissions over phone lines or network cables is a rapidly expanding field. Users of electrical apparatus such as laptops, notebooks, palmtops, and PDAs are finding such practice to be of great value.
For example, there are numerous public and private networks and databases which store data or programs. Absent the ability to connect with such systems over the telephone lines, a user is relegated to relying upon the exchange of discs or tapes in order to receive data suitable for use with their computer.
Similarly, companies performing tasks that are integrated are aided by local area networks (“LANs”) which permit personnel to exchange electronically retrievable data. The ability to freely transfer data and information from one computer to another computer over a telephone line or cable can dramatically increase productivity and reduce overall production time.
Furthermore, the increased use of palmtops and PDAs has increased the need to transfer data between such apparatus and other computers, particularly personal computers. This enables a user to quickly transfer information, such as telephone or address lists, without having to make manual entries.
The interface between a computer and a cable or telephone line is typically accomplished through a physical/electrical media connector. One conventional type of media connector is the RJ-type connector. RJ-type connectors are used by almost all telephone companies throughout the world for many applications, the most important of which is interconnection of telephones with telephone lines. For this reason, stringent standardization of connectors has been established to enable compatibility and interactivity. Due to the simplicity of the connection and the established standards, RJ-type connectors are used extensively in the computer industries and in other industries where communication over telephone lines or other types of cables is required.
RJ-type connectors include a plug or contact block and a receptacle or socket. The plug comprises a small block shaped body coupled with a cable, such as a telephone line. Housed within the body are several distinct metal contacts. Each of the metal contacts is attached to a discrete wire within the cable. Thin slots extend from the end of the body to each of the contacts. Mounted on the outside of the body is a flexible retention clip that is used for removably securing the plug within the socket of the electrical apparatus.
The socket is integrally formed on the side of the electrical apparatus and is configured to receive the plug. Disposed within the socket are flexible contact wires. The contact wires are oriented to be received within the corresponding slots of the plug when the plug is placed into the socket. The contact wires within the socket press against corresponding contacts on the plug to complete the electrical connection between the plug and the electrical apparatus.
The interior surface of the socket comprises the latching mechanism that receives the retention clip of the plug so as to mechanically secure the plug within the socket by holding retention notches of the retention clip. To remove the plug, the retention clip is manually flexed towards the body of the plug to release the hold of the latching mechanism on the retention notches, thereby enabling manual removal of the plug from the socket.
Although RJ type connectors are used extensively, they have several shortcomings. Most notably, the achievements in microprocessing have enabled manufactures to dramatically downsize various electrical apparatus. For example, mobile telephones and PDAs now exist that can easily fit in a shirt pocket. Such apparatus, however, are limited from further downsizing by the size of the socket in which the plug is received. That is, to enable an electrical apparatus to house a standard sized socket having a defined thickness, the electrical apparatus must have at least the same thickness.
Besides limiting the size of an electrical apparatus, a socket housed within an electrical apparatus occupies valuable space. Even in larger apparatus it is desirable to optimize the use of space so as to minimize size. When an electrical apparatus does not need to couple with a plug, the space occupied by the coupling socket is wasted.
As electronic communications devices have continued to be downsized, so have peripheral communications devices. A typical communications device is a PCMCIA card.
Standards have been promulgated by the Personal Computer Memory Card International Association (PCMCIA) for PCMCIA cards which are widely accepted. These standards include spatial size restrictions of approximately 55 mm in width, 85 mm in length, and 5 mm in depth. In keeping with these standards, various manufacturers build communications devices that meet these specifications. Electronic apparatus have also been configured with expansion slots for receiving these various communications devices.
Because these communications devices are narrower than the typical RJ-series media plugs used to connect to communications devices, adapters were required. One skilled in the art should recognize a dongle as a typical adapter. However, this caused problems because the dongle had to be stored and could easily be misplaced. A solution to this problem was developed by the innovation of expandable media connectors, as embodied in U.S. Pat. No. 5,183,404, issued to Aldous et al. Extendable media connectors have a profile that is thinner than the media plug being connected to the electrical apparatus and can be slidably retracted into the housing of the communications device. Extendable media connectors can also be directly connected to an electronic apparatus.
One problem encountered by extendible media connectors is the insertion depth of the plug when it couples with the extendable media connector. In particular, the nose of the plug can extend beyond the bottom of the extendable media connector and cause snagging of the plug with other objects such as a bedspread or a sheet. The depth of a PCMCIA standard communications device is limited to 5 mm. However, the depth of a media connector such as the RJ-type plug is approximately 8-12 mm.
The insertion depth of the media plug can also be problematic when the media plug is connected to a first communications device that is stacked on top of a second communications device, such as within a double bay expansion slot of an electrical apparatus.
It is common in the industry to stack communications devices within an electrical apparatus to maximize the capacity of the electrical apparatus by incorporating various hardware and communications devices. This is particularly true for portable computers. It is also typical for a portable computer to be configured with a double bay expansion slot for receiving stacked communications devices. By way of example, and not limitation, an exemplary stacking configuration of communications devices within a typical double bay expansion slot might include a PCMCIA card stacked above a network interface card.
Various communications devices are suitably configured for being stacked in a double bay expansion slot, including, but not limited to PCMCIA cards, network interface cards, wireless cellular cards, sound cards, memory cards, and peripheral device controller cards. Although stacking communications devices does increase the capacity of the electrical apparatus to incorporate various communications devices, it can also prevent simultaneous use of the communications devices, in a sense, defeating the purpose of stacking the communications devices.
Use of a second communications device in a stacked configuration cannot be used when the coupling of a media connector with a first communications device obstructs the coupling of another media plug with the second communicatio
Forte Steven Lo
Kunz Ryan
Oliphant David
3Com Corporation
Bradley P. Austin
Gilman Alexander
LandOfFree
Low profile connector with extending latch mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Low profile connector with extending latch mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low profile connector with extending latch mechanism will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2871690