Low profile cartridge for data storage disk

Dynamic magnetic information storage or retrieval – Record medium – In container

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C720S739000

Reexamination Certificate

active

06809903

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed generally to a low profile cartridge and specifically to a low profile cartridge for an optical disk.
BACKGROUND OF THE INVENTION
A number of disk-shaped optical storage media have been developed for use in storing various types of digital data in a manner such that the media can be readily removed from the read/write or drive device for which it is designed. A common type of optical media is second-surface optical media. In accordance with one definition, second-surface optical media can be defined in terms of the read operation that is conducted when reading information from the media. In particular, a second-surface optical medium can refer to a medium in which the read beam is incident on the substrate of the optical medium or disk before it is incident on the information content portions thereof.
The relatively thick and transparent substrate of second-surface optical media makes read-only or read-write operations relatively insensitive to dust particles, scratches and the like which are located more than 50 wavelengths from the information content portions thereof. On the other hand, the second-surface optical medium can be relatively sensitive to various optical aberrations. These optical aberrations include: (1) tilt of the substrate relative to the optical axis; (2) substrate thickness variations; and/or (3) substrate birefringence.
Another drawback associated with second-surface optical media is that the optical requirements of such media are substantially inconsistent with the miniaturization of the disk drive and optical components for such media. As will be appreciated, a longer working distance (distance between the objective lens and the information content portions) is required for an optical system that will read information from or write information onto second-surface media. This is due to the relatively thick transparent layer through which the radiation must pass to access the information content portions. To provide the longer working distance, larger optical components (e.g., objective lens) are required.
Because of these disadvantages associated with second-surface optical media, a first-surface optical medium has been devised by the assignee of the present application. Although it may be subject to more than one definition, in one embodiment, the first-surface optical medium refers to a medium in which the read beam during a read operation is incident on or impinges on information content portions of the first-surface optical medium before it impinges on a substrate of the first-surface optical medium.
The first-surface medium offers numerous advantages over a second-surface medium. By way of example, with the first-surface medium, the radiation does not pass through the relatively thick substrate so that there is a relatively shorter optical path, in comparison with second-surface medium, thereby providing a significantly shorter working distance, in comparison with second-surface medium. Since there is a shorter working distance, a smaller objective lens diameter, for a given numerical aperture, can be utilized which results in smaller, lower mass optical components to achieve a greater degree of optical drive miniaturization. Furthermore, the first-surface medium is not sensitive to substrate birefringence and substrate thickness variations. The first-surface medium is also much less sensitive to substrate tilt.
However, because there is no protective layer with a first-surface optical medium, to protect it from damage or being subject to unwanted particles or debris, it is imperative that a sufficiently protective housing or cartridge be employed to contain the optical medium. There are a number of factors to be considered in designing the protective cartridge for first-surface optical media. The cartridge should include a number of complementary and/or redundant protective features. For example, the cartridge should have features to protect the enclosed first-surface disk from damage such as by scratches and abrasions caused by handling of the cartridge or rotation of the enclosed disk during read and/or write operations. As will be appreciated, the cartridge should be designed to prevent contact of a surface of the cartridge with the operational surface of the disk. The cartridge should have features to retard the entry of dust and other foreign matter into the interior of the cartridge. Such foreign matter can prevent the optical head from reading information from or writing information to the disk. The cartridge should have a small form factor to permit the cartridge to be used with small, hand-held electronic devices, such as PEDs (Personal Electronic Devices) and digital cameras. The cartridge should have features to self-locate the cartridge in the disk drive. Such features facilitate proper alignment of the operational surface and data tracks relative to the optical head. The cartridge should also have features permitting the use of a double-sided, first-surface, optical disk. In other words, the cartridge should permit the optical head to access both of the opposing operational surfaces of the disk.
SUMMARY OF THE INVENTION
These and other design considerations are satisfied by one or more of the cartridge embodiments of the present invention.
In a first embodiment of the present invention, an apparatus for use in an optical system is provided. The apparatus includes a cartridge assembly having upper and lower shutter members that move independently of one another. In particularly preferred configuration, a single mechanism, such as a rotary arm mounted in the disk drive, engages and moves each of the shutter members. In one configuration, the mechanism engages and moves a first (but not a second) shutter member when the cartridge assembly is inserted into the disk drive in a first orientation and engages and moves the second (but not the first) shutter member when the cartridge assembly is inserted into the disk drive in a second orientation that is different from the first orientation. In one application, the first orientation is the flip side (or reverse) of the second orientation.
In another embodiment, a cartridge assembly is provided that includes a double-sided optical medium, access openings (for the optical head) located on opposing surfaces of the cartridge assembly, and one or more shutter members that are movably disposed to cover or uncover (simultaneously or sequentially) the access openings. In this manner, the cartridge assembly can be inserted into the disk drive in a first orientation to reveal a first operational surface of the medium and in a second orientation to reveal a second operational surface of the medium. As noted above, the first orientation can be the flip side (or reverse) of the second orientation.
In yet another embodiment, an apparatus for use in an optical system is provided. The apparatus includes:
(a) an optical storage medium (which can be first- or second-surface) having at least a first side for storing information;
(b) a hub assembly operatively associated with the optical storage medium; and
(c) a cartridge assembly that contains the optical storage medium and the hub assembly. The cartridge assembly includes a first optical storage medium protector for use in safeguarding the optical storage medium against the occurrence of one or more unwanted events and a second optical storage medium protector for use in safeguarding the optical storage medium against the occurrence of one or more second unwanted events. The unwanted events, for example, can be contact of the operational surface of the disk with a cartridge wall(s) due to inward deflection of the cartridge wall(s) by a user, contact of the operational surface of the disk with the cartridge wall(s) during rotation of the disk by a disk drive, and collection of foreign matter on the disk operational surface.
The first and second optical storage medium protectors are preferably selected from a variety of features.
In one configuration, the first and/or second optical storage medium protect

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low profile cartridge for data storage disk does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low profile cartridge for data storage disk, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low profile cartridge for data storage disk will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3331656

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.