Electric lamp and discharge devices – With luminescent solid or liquid material – With gaseous discharge medium
Reexamination Certificate
2000-04-27
2002-07-09
Patel, Vip (Department: 2879)
Electric lamp and discharge devices
With luminescent solid or liquid material
With gaseous discharge medium
C313S635000
Reexamination Certificate
active
06417614
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to a low-pressure mercury vapor discharge lamp comprising a discharge vessel with a tubular portion which is transmissive to radiation generated in the discharge vessel,
said discharge vessel enclosing a discharge space provided with a filling of mercury and a rare gas in a gastight manner,
the tubular portion of the discharge vessel being provided with a metal oxide layer and a luminescent layer on a surface facing the discharge space, and
the low-pressure mercury vapor discharge lamp comprising discharge means for maintaining an electric discharge in the discharge vessel.
Mercury constitutes the primary component for (efficiently) generating ultraviolet (UV) light in mercury vapor discharge lamps. A luminescent layer comprising a luminescent material (for example, a fluorescent powder) is present on an inner wall of the discharge vessel for converting UV to other wavelengths, for example, to UV-B and UV-A for tanning purposes (sun panels) or to visible radiation for general illumination purposes. Such discharge lamps are therefore also referred to as fluorescence lamps. The discharge vessel of low-pressure mercury vapor discharge lamps is usually circular and has both elongated and compact embodiments. Generally, the tubular discharge vessel of compact fluorescence lamps has a collection of relatively short, straight parts of a relatively small diameter, which straight parts are interconnected by means of bridge parts or via bent parts. Compact fluorescence lamps are usually provided with an (integrated) lamp base. In such embodiments of the low-pressure mercury vapor discharge lamp, the discharge means comprise electrodes which are arranged in the discharge space. An alternative embodiment comprises the electrodeless low-pressure mercury vapor discharge lamps.
A low-pressure mercury vapor discharge lamp of the type described in the opening paragraph is known from U.S. Pat. No. 4,544,997. In the known discharge lamp, the tubular portion of the discharge vessel is provided with a layer of at least an oxide of at least an element of the group of scandium, yttrium, lanthanum, gadolinium, ytterbium and lutetium. The metal oxide layer inhibits attack of the wall of the tubular portion of the discharge vessel due to interaction with mercury and thus has a favorable influence on maintaining the radiation output of the lamp. The metal oxide layer is obtained by rinsing a solution of a metallo-organic compound on the surface of the discharge vessel facing the discharge space and by subsequently drying the film remaining on the surface facing the discharge space and by subsequent sintering.
Due to the metal oxide layer, the mercury consumption of the lamp, i.e. the quantity of mercury which is bound on lamp components during operation of the lamp and is thus no longer available for operation of the lamp, is relatively low as compared with that in lamps which do not have such a metal oxide layer. Nevertheless, a relatively high mercury dosage is necessary for the known lamp so as to realize a sufficiently long lifetime. After the end of the lamp lifetime, injudicious processing is detrimental to the environment.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a low-pressure mercury vapor discharge lamp of the type described in the opening paragraph, consuming a relatively small quantity of mercury.
According to the invention, the discharge lamp is therefore characterized in that the luminescent layer comprises an alkali metal oxide.
A number of parts of a low-pressure mercury vapor discharge lamp (for example, the discharge vessel, the luminescent materials, etc.) is not inert to mercury which is present in the discharge. Such parts have the tendency of absorbing mercury. This does not only imply that more mercury should be present in the discharge vessel so as to ensure that the discharge lamp remains in operation during its lifetime, but also that the efficiency of the discharge lamp during its lifetime gradually decreases because many Hg compounds absorb UV and/or visible light. During the lifetime of the low-pressure mercury vapor discharge lamp, the bare glass of the discharge vessel absorbs several milligrams of mercury. By providing a coating (for example, of SiO
2
) on the discharge vessel, this absorption is reduced by 50%, and by providing a suitable metal oxide layer (for example, a dual coating of SiO
2
/Al
2
O
3
or SiO
2
/Y
2
O
3
) this absorption is reduced to less than a few hundred &mgr;g. The inventors have found that the reduction of the quantity of mercury available for the discharge in the discharge space is mainly caused by the exchange of the alkali metal (for example, Na and/or K) and Hg, and by the absorption of mercury by the surface of the discharge vessel facing the discharge space. During operation of the discharge lamp, mercury enters the wall of the discharge vessel, while the alkali metal oxide simultaneously leaves the wall of the discharge vessel. Mercury consumption through the wall of the discharge vessel is related to imperfections in the metal oxide layer provided on the inner wall of the discharge vessel. Such imperfections give rise to unwanted alkali metal oxide diffusion (for example, diffusion of Na
2
O and/or K
2
O) during processing of the discharge lamp, and also to the possibility of mercury atoms adhering to uncoated parts of the discharge vessel, whereafter diffusion of mercury takes place in the glass. Since the diffusion of the alkali metal oxide is generally driven by a concentration gradient between the wall of the discharge vessel and the luminescent layer, the presence of sodium oxide in the luminescent layer causes a much lower diffusion of the alkali metal oxide from the wall of the discharge vessel during processing of the discharge lamp.
By suitably choosing the concentration of sodium oxide in the luminescent layer, the diffusion of the alkali metal oxide from the wall of the discharge vessel can be largely prevented. To this end, a preferred embodiment of the low-pressure mercury vapor discharge lamp according to the invention is characterized in that the alkali metal oxide in the luminescent layer comprises sodium oxide and/or potassium oxide, in which the concentration of alkali metal oxide is 0.001≦Na
2
O≦0.2% by weight and/or 0.001≦K
2
O≦0.2% by weight For alkali metal oxide concentrations of less than 0.001% by weight, there is no noticeable reduction of the concentration gradient between the wall of the discharge vessel and the luminescent layer. For alkali metal oxide concentrations of more than 0.2% by weight, the diffusion of Na
2
O and/or K
2
O from the wall of the discharge vessel is not further inhibited.
The concentration of the alkali metal oxide in the luminescent layer is preferably 0.002≦Na
2
O≦0.1% by weight and/or 0.002≦K
2
O≦0.1% by weight.
An attractive embodiment of the lamp according to the invention is characterized in that the metal oxide layer on the surface of the tubular portion facing the discharge space comprises at least an oxide of at least an element from the group of magnesium, aluminum, titanium, zirconium, and the rare earths. In this description and the claims, the rare earths are understood to be scandium, yttrium, lanthanum and the lanthanides. Such a layer is highly inert so that, also in the long term, the mercury consumption due to reactions of mercury from the filling with the metal oxide layer is small.
Favorable results are obtained with an embodiment of the lamp according to the invention, which is characterized in that the metal oxide layer of the tubular portion comprises aluminum oxide and/or yttrium oxide. Such a layer may be provided, for example, as a suspension of aluminum oxide/yttrium oxide particles, for example, by atomizing the suspension or by causing it to flow across the inner surface of the discharge vessel.
An advantageous embodiment is characterized in that the tubular portion of the discharge vessel has a further metal oxide layer between the surface facing the discha
Denissen Cornelis Johannes Maria
Ronda Cornelis Reinder
Weiler Volker Ulrich
Halajian Dicran
Patel Vip
LandOfFree
Low-pressure mercury vapor discharge lamp does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Low-pressure mercury vapor discharge lamp, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low-pressure mercury vapor discharge lamp will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2900633