Low precipitate polyamide based tubing

Pipes and tubular conduits – Flexible – Distinct layers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C138S140000, C138S141000, C138SDIG007, C428S036700, C428S036910

Reexamination Certificate

active

06467508

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to compositions of matter classified in the art of chemistry as polyamides, particularly polyamides 11 and 12, articles of manufacture useful in the art of the transport of fluids such as solvents, polar fluids and fuels for applications such as fuel hoses or tubing for internal combustion engines, particularly engines for use in self-propelled vehicles as well as processes for said articles of manufacture and of said compositions of matter.
Flexible hoses for fuel systems and fuel vapor pollution control for internal combustion engines are well known. Such hoses have been fabricated from single layers (single wall hoses) of polyamide and other synthetic polymers and in the past have proven satisfactory in such use for automobiles and other vehicles as well as in internal combustion engines for stationary use. These single wall hoses, which may have lengths as great as several meters, must, once installed, not materially charge or rupture during their service life due to shrinkage, elongation in response to heat or cold or any other stresses applied during use.
Recently changing, more rigorous, environmental regulations have required that these fuel supply hoses, particularly for automotive vehicles, be relatively impervious to fuel vapors and, because of polar ingredients such as oxygenates required to be formulated in the fuel, that the material in the hose in contact with the fuel be resistant to extraction of materials from the hose which precipitate into the fuel or have the potential to clog fuel filters, fuel injectors and the like which have extremely small orifices and, thus, low tolerance for particulates in the fuel.
One solution to the permeation problem has been to coextrude multilayer (multiwall) tubing or hoses having at least one layer (often referred to as a “barrier layer”) which is not permeable to hydrocarbon vapors or other volatile components of the fuel.
In order to avoid the problems associated with precipitates related to extraction of components from polyamides, the use of polyamide monolayer tubing or multilayer tubing having a polyamide inner layer has been preferably avoided in the design of such hoses.
Typical of such multilayer constructions are those described in U.S. Pat. Nos. 5,419,374; 5,996,642; 5,510,160; and 5,554,426, as well as the references cited in those patents. The reasons why polyamides in contact with the fuel are undesirable are explained in detail in U.S. Pat. No. 5,996,642 particularly. In the constructions in these patents, the mechanical properties of polyamide are coupled with the permeability barrier properties of various fluoropolymers which by themselves would either be too expensive for use in automotive production or lack one or more of the mechanical properties of polyamides which otherwise make polyamide 12 or 11 the preferred polymers for fuel hose manufacture. Since polyamides and many fluoropolymers do not adhere well together without either mechanical interlinkage or a tie layer between them, the above cited references also address a number of solutions to this problem, such as use of a tie layer or use of an acrylic-modified fluoropolymer barrier layer.
As used herein, the term “low precipitate polyamide” means that the polyamide has been washed or extracted to reduce the level of components such as oligomers (low molecular weight polyamide), solids or semi-solids which would otherwise be released by the polyamide after exposure to the transported fluid and/or precipitate into the fluid.
SUMMARY OF THE INVENTION
The invention provides in a composition aspect, improved tubing (or hose) for fluid transport comprised of low precipitate polyamide (preferably polyamide 12 or 11), both in the form of monolayer tubing (preferably for conveying fuel) and as multilayer tubing comprised of at least an inner polyamide layer in contact with the fluid and a barrier layer (preferably a fluoropolymer such as a polyvinylidene fluoride, unmodified or modified to improve adhesion using materials such as a polyglutarimide or an acrylate copolymer). The barrier layer may be bonded to the polyamide layer via a tie layer (for example, as taught in U.S. Pat. No. 5,242,976), via adhesive bonding (as taught, for example, in U.S. Pat. Nos. 5,419,374 and 5,510,160) or via use of an acrylic-modified barrier layer which adheres itself to the polyamide (as taught, for example, in U.S. Pat. No. 5,554,426). One preferred construction for use in a motor vehicle fuel comprises at least an inner polyamide layer in contact with the fuel, an intermediate tie layer bonded to the outer surface of the inner layer and a layer of a polyvinylidene fluoride bonded to the outer surface of the intermediate tie layer, the improvement comprising using low precipitate polyamide as the inner layer. Other preferred constructions for such use include multilayer tubing comprised of an inner layer of low precipitate polyamide, an intermediate layer of modified polyvinylidene fluoride, and an outer layer of polyamide, as well as multilayer tubing comprised of a first, inner layer of low precipitate polyamide which is conductive in order to discharge static electricity, a second, polyamide layer, a third, modified polyvinylidene fluoride layer, and a fourth, outer layer of polyamide.
The tangible embodiments of the improved composition aspect of the invention possess the inherent applied use characteristics of being suitable for the transport of fluids such as hydrocarbon based fuel, and vapors thereof, for internal combustion engines, particularly automotive use and those hydrocarbon fuels containing oxygenated additives, such as alcohols or ethers in particular, while not adding contaminants to said fuels which would have a tendency to obstruct passage of said fuel through fuel filters, fuel pumps, carburetor jets or fuel injection jets and the like.
Special mention is made of embodiments of the composition aspect of the invention wherein the innermost layer does not contain electrostatic discharge capacity, as well as embodiments wherein the innermost layer includes electrostatic discharge capability; embodiments having corrugations perpendicular, parallel to, or at an angle to the longitudinal axis of the hose (such as taught in U.S. Pat. No. 5,996,642); embodiments having one or more additional layers adhered to the outer surface of the outer surface of the barrier layer; and of embodiments wherein when the innermost layer in contact with the fluid has electrostatic discharge capability, said electrostatic discharge capability is distributed non-uniformly throughout said innermost layer, preferably with at least the greater portion of the electrostatic discharge capability being concentrated in the vicinity of the innermost face of said innermost layer which face is in direct contact with the fluid.


REFERENCES:
patent: 5242976 (1993-09-01), Strassel et al.
patent: 5419374 (1995-05-01), Nawrot et al.
patent: 5510160 (1996-04-01), Jadamus et al.
patent: 5554426 (1996-09-01), Rober et al.
patent: 5570711 (1996-11-01), Walsh
patent: 5996642 (1999-12-01), Noone et al.
patent: 6040025 (2000-03-01), Lorek
patent: 6041826 (2000-03-01), Lorek et al.
patent: 6143415 (2000-11-01), Lorek et al.
patent: 6177162 (2001-01-01), Siour et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low precipitate polyamide based tubing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low precipitate polyamide based tubing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low precipitate polyamide based tubing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2941346

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.