Low permeation nylon tube with aluminum barrier layer

Stock material or miscellaneous articles – Hollow or container type article – Polymer or resin containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C138S137000, C138S138000, C138S141000, C138S143000, C138S146000, C138S172000, C428S036900, C428S458000, C428S461000, C428S462000

Reexamination Certificate

active

06652939

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to the field of tubes, and particularly to the field of automobile fuel and vapor transmission tubes having reduced permeability to such fuel and vapor. More particularly, the invention relates to multi-layer nylon fuel transport tubes which have a thin aluminum barrier layer between an inner conductive nylon tube and an outer non-conductive nylon tube, and to the use of such fuel transport tubes to reduce the amount of fuel vapor released to the atmosphere from motor vehicles.
Recent environmental regulations imposed on the automotive and on the fuel delivery industries severely limit the amount of fuel vapor that can permeate from the fuel system of motor vehicles and from the fuel delivery hoses used to transport such fuels. For example, these regulations require that all new automobiles sold in states where this regulation are in effect must pass a vehicle permeation test designated as the S.H.E.D TEST, which measures the emissions, i.e., fuel vapors, from a motor vehicle with the engine not running. Under this regulation, a maximum of 2 grams of vapor emission per 24 hours period is allowable. Such emissions are those permeating from the fuel hoses and any other parts of the fuel supply system.
Typically, fuel transfer hoses, in the past, have been constructed of natural or synthetic rubber material such as butadiene-acrylonitrile rubber or the like. Other hoses have been constructed using a fluoroelastomer as an inner wall surface layer of the hose and some other material as the outer layer. Such hoses have a high permeability to fuel vapor. Attempts to produce fuel transport hoses with reduced permeability to fuel vapors have included the use of corrugated polyamide and fluorocarbon thermoplastic tubes. However, these structures are presently considered to be only marginally effective to reduce the permeability of fuel vapors while being relatively expensive.
Others have attempted to produce a fuel hose with reduced permeability to fuel vapors by using a tetrafluoroethylene-hexafluoropropylene-vinylidine fluoride terpolymer liner and a thicker layer of hexafluoropropylene-vinylidine fluoride copolymer or other suitable elastomer as the conductive inner part of the tube. For example, such hoses are discussed in U.S. Pat. No. 4,606,952 to Sugimoto and U.S. Pat. No. 5,430,603 to Albino et al. Such hose structures though have a tendency to wrinkle on the inner radius of the forming mandrel or pin causing an undesirable and discernable defect which may also exhibit a weakened area in the hose.
A number of prior art patents disclose flexible hoses incorporating metallic layers of one type or another to reduce permeability of various materials. Such disclosures appear, for example, in U.S. Pat. No. 318,458 to Fletcher, where there is disclosed a multi-layer tubular structure made from India rubber and having a tin foil liner. Other prior art patents such as U.S. Pat. No. 4,559,793 to Hane et al.; U.S. Pat. No. 4,758,455 to Campbell et, al.; U.S. Pat. No. 5,182,147 to Davis; U.S. Pat. No. 5,271,977 to Yoshikawa et al.; U.S. Pat. No. 5,360,037 to Lindstrom; and U.S. Pat. No. 5,398,729 to Spurgat have attempted similar methods to reduce permeability of fluids and/or gases through various tubes. Typically, such prior art hoses are constructed by coating a metal strip on both sides with an adhesive which may, for example, be an adhesive made from a copolymer of ethylene and a monomer having a reactive carboxyl group. Commonly assigned U.S. Pat. No. 6,074,717 to Little et al., and U.S. Pat. Nos. 4,779,673 and 5,488,975 to Chiles et al disclose synthetic rubber hoses used for circulation of fluids in radiant heating systems in houses and businesses. Chiles U.S. Pat. No. 5,488,975 discloses a flexible heating system hose having an oxygen barrier layer which may be aluminum. U.S. Pat. No. 5,476,121 to Yoshikawa et al teaches a low permeable rubber hose having a barrier layer of silver or silver alloy formed by wet plating or dry plating with ion plating or sputtering. None of these art references teach a flexible fuel hose having an aluminum barrier layer bonded to a conductive NBR inner tube and to an elastomeric adhesion layer which might serve as a cover, wherein the rubber layers are vulcanized to prevent delamination.
Choosing the right combination of materials to be used in the construction of fuel hoses, such as fuel filler hoses and fuel filler neck hoses is becoming more and more difficult. Therefore, an urgent need exists, particularly in the automotive and fuel delivery industries for a fuel hose which prevents permeation of fuels and vapor and which resists delamination under stress over long periods of time while maintaining manufacturing costs at an acceptable level.
SUMMARY OF THE INVENTION
The present invention provides a fuel tube for use in fuel systems which is constructed to prevent permeation of fuel vapor into the environment and to prevent delamination under stress for a long period of time. In accordance with the invention, the fuel hose has a layer of aluminum sandwiched between a conductive nylon inner tubular structure and an outer non-conductive nylon tubular structure which could serve as a cover for the fuel hose.
Nylon is a generic name for a family of polyamides generally characterized by the presence of the amide group, —CONH. Not all nylons are polyamide resins, nor are all polyamide resins nylons. Typically, nylons have been prepared in the past by the condensation of a dicarboxylic acid and a diamine. For example, nylon 66 is prepared by the condensation reaction of the six-carbon dicarboxylic acid, adipic acid and the six-carbon diamine, hexamethylenediamine. Nylon 610 is commonly prepared by the condensation reaction of sebasic acid, a 10-carbon dicarboxylic acid, and hexamethylenediamine. Other nylons such as nylon such as nylon 4, nylon 6 and nylon 9 are obtained by polymerization of butyrolactam, caprolactam and 9-aminononanoic acid, respectively. Nylon generally have good electrical resistance, but readily accumulate static charges.
The nylons useful in the present invention include nylon 4, nylon 6, nylon 66, nylon 610, nylon 9, nylon 11, nylon 12, etc. The nylon used to construct the inner conductive tubular structure and the outer non-conductive layer may be the same or different. Preferably, nylon 12 is used in the invention to construct both the inner conductive tubular structure and the outer non-conductive layer. The nylon used to prepare the inner conductive tube will contain an agent which imparts conductivity to the nylon. Typically, the conductive agent is carbon black, but may be any conductive agent or combination of conductive agents commonly recognized in the industry to provide conductivity to a rubber or plastic material. Examples of such conductive agents include elemental carbon, copper, silver, gold, nickel, and alloys of such metals. Preferably, the conductive agent is elemental carbon which is commonly referred to in the art as carbon black.
The outer non-conductive layer is constructed from a rubber or thermoplastic material such as nylon, chlorinated polyethylene; chlorosulfonated polyethylene; styrene-butadiene rubber; butadiene-nitrile rubber; nitrile-polyvinyl chloride; EPDM, neoprene; vinylethylene-acrylic rubber; acrylic rubber; epichiorohydrin rubber; copolymers of epichlorohydrin and ethylene oxide; polychloroprene rubber; polyvinyl chloride; ethylene-propylene copolymers; ultra high molecular weight polyethylene; high density polyethylene; chlorobutyl rubber; and blends thereof. Preferably, the outer non-conductive thermoplastic layer is formed from nylon and, most preferably from nylon
12
.
In addition to the conductive nylon inner tube, the aluminum layer and the non-conductive nylon outer tube, the hose of the present invention may contain a first tie layer between the inner conductive nylon tubular structure and the aluminum barrier layer, and a second tie layer between the aluminum barrier layer and the outer non-conductive layer to prevent delamina

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low permeation nylon tube with aluminum barrier layer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low permeation nylon tube with aluminum barrier layer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low permeation nylon tube with aluminum barrier layer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3144493

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.