Low oxygen organic waste bioconversion system

Liquid purification or separation – Processes – Treatment by living organism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S609000, C210S615000, C210S610000, C210S170050

Reexamination Certificate

active

06689274

ABSTRACT:

The present invention relates to a novel nutrient rich humus material produced by a process for the substantially odorless biological treatment of solid and liquid organic wastes, particularly animal farm wastes.
BACKGROUND OF THE INVENTION
Municipal wastewater treatment facilities, animal farming facilities, and organic industrial treatment and food processing facilities treat and generate highly polluting, odoriferous organic waste streams. With increasing human population density, such facilities have come under increasing pressure to upgrade, modify, or supplement their treatment processes so as to improve the air quality in and around such facilities and further protect the environment, and human and animal health. A particularly persistent problem addressed by the present invention is the treatment of animal excrement containing high concentrations of microbial substrates (nutrients such as phosphorus, sulfur and particularly nitrogen and other organic biodegradable materials as measured by the total biochemical oxygen demand (BOD) test) which, in typical animal treatment systems, not only pollute surface and subsurface water supplies, but also negatively impact air and soil quality. Further, present treatment alternatives for organic waste streams, such as animal excrement, frequently generate and exacerbate the offensive odors.
Traditionally, animal farming was accomplished on large tracts of land in remote rural areas, with the farmer accepting the offensive odors associated with animal husbandry as a necessary evil. Waste excrement generated from the animal farming was gathered and spread on the farm as fertilizer. The animal waste excrement was allowed to slowly decay in the field and a portion of the unstable nutrients, including phosphorous and nitrogen products, were generally taken up by the growing crop plants. The remainder of the bioavailable or biologically useable nutrients was assimilated by the general environment, usually with no negative ecological impact. When incorporated by plant growth, the nutrients were eventually consumed by the animals for an efficient recycling of nutrients.
Modern high-density animal farming practices, particularly modem feedlot and dairy farming practices, have detrimentally impacted the ecological balance of traditional animal farming methods. Modern agricultural practices concentrate larger numbers of animals in ever-smaller areas leaving larger amounts of waste excrement to be managed by distribution to ever decreasing land areas. In addition, the larger amounts of food required by the increasing density of animals per acre and modem intense feeding practices which use supplemental animal feed containing high concentrations of nutrients, result in larger volumes of manure which cannot be efficiently distributed by traditional methods without severe environmental impacts. Fields on which such manures have been spread become exceedingly rich in unstabilized nutrients and sludge, thereby creating a pollution hazard to water bodies and promoting emissions of repugnant odors. Rain, snow and the like falling on the soil, carry large masses of the unstabilized waste (along with accompanying odors) into the underlying soil that may then infiltrate to the underlying groundwater. The runoff created carries the substances to surface water bodies and generates airborne odors. With the flow of water through drainage ditches, groundwater movement and the like, eventually fresh water aquifers, groundwater, surface waters and other water resources become polluted.
The problem of air and water pollution caused by excessive organic wastes can be exacerbated by an accompanying concentration of toxic materials. Concentrations of toxic materials, which may have been used as animal pharmaceuticals, insecticides, and/or herbicides, including heavy metals and the like, may be part of the animal food intake. Though not generally harmful to the animal or the animal product being produced these materials may end up being further concentrated in the animal's excrement, which is in turn discharged to the local ecosystem.
Various solutions have been proposed to solve the waste management problems posed by modern animal farming, but have been judged to be incomplete, too expensive or so specialized that they only serve to change or postpone the problem.
For example, it has been proposed that complex mechanical systems be installed to provide manageable manure slurries and that systems be installed by the farmer to enable spraying the manure slurry on differing land areas in a rotating manner to reduce the impact of excrement concentration. It has also been proposed to isolate manure in depositories secure from rainwater run-off until the stabilization (decaying) process has produced a concentrated, desirable humus material that can then be commercially sold or otherwise distributed to non impacted localities. Such solutions merely allow for the natural incomplete decay of the manure as evidenced by exacerbated odor problems, require constant manpower, do not resolve the problem of migration of unstabilized waste, and require excessive amounts of time, space and money for treatment.
Conventional biological wastewater treatment technologies for domestic, industrial and animal organic wastes utilize aerobic or anaerobic bioconversion processes, with aerobic processes being the most common. Some modem treatment technologies, such as waste stabilization ponds, utilize both aerobic and anaerobic processes wherein different zones are created within a single treatment unit for each different type of microbial bioconversion. Within these systems, the aerobic zone is typically separated from the anaerobic zone by a facultative zone. Facultative zones contain bacteria that can grow and function both in the presence and absence of oxygen.
One generally successful treatment process of the prior art developed by Bion Technologies, Inc., generally known as the BION® NMS process, is a bioconversion process which transforms animal waste excrement, containing significant concentrations of total BOD and nutrients, into an ecologically stable, nutrient rich organic humus material known as BIONSOIL®. As described in U.S. Pat. No. 5,755,852, the BION® NMS process generally includes an anaerobic process in a first zone (an ecoreactor) which utilizes both anaerobic and facultative bacteria and a combination aerobic/anaerobic process which utilize aerobic, anaerobic and facultative bacteria in a second zone (a bioreactor). Alternatively, the BION® NMS process could also include a third zone (a polishing ecoreactor) wherein plants and microorganisms treat the waste.
Generally, the BION® NMS process utilizes a combination of chemical precipitation, physical settling, and natural living systems such as microbes and plants to achieve bioconversion of the waste. Specific treatment systems incorporating the BION® NMS process such as for dairy farms and hog farms are individually designed according to actual conditions but generally include one or more of the three zones; a solids ecoreactor, a bioreactor and a polishing ecoreactor.
As described in U.S. Pat. No. 5,755,852, an ecoreactor is a multi-cell composting, solids dewatering and bioconversion means. A solids ecoreactor of the BION® NMS process requires construction of a plurality of holding cells, surrounded by containment berms, generally arranged so that individual or sets of cells may be periodically taken off-line from the on-going process so that their contents may be harvested (removal of bioconverted biosolids), dewatered (physical unit process, usually mechanical, for reducing moisture content) and/or dried (reduction of water content by vaporizing water to the air) to produce a bioconverted organic humus or BIONSOIL®. Once harvested, the cell(s) are available and are eventually reactivated or placed back on-line within the bioconversion process. The principle function of a solids ecoreactor is to convert excess biomass produced by the bioreactor to an ecologically beneficial humus material.
As described in U.S. P

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low oxygen organic waste bioconversion system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low oxygen organic waste bioconversion system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low oxygen organic waste bioconversion system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3355028

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.