Multicellular living organisms and unmodified parts thereof and – Plant – seedling – plant seed – or plant part – per se – Higher plant – seedling – plant seed – or plant part
Reexamination Certificate
2000-12-29
2003-12-09
Fox, David T. (Department: 1638)
Multicellular living organisms and unmodified parts thereof and
Plant, seedling, plant seed, or plant part, per se
Higher plant, seedling, plant seed, or plant part
C800S278000, C800S298000, C435S183000, C435S185000, C426S007000, C426S011000, C426S064000
Reexamination Certificate
active
06660915
ABSTRACT:
FIELD OF THE INVENTION
This invention is in the field of plant biotechnology. More specifically, the invention relates to a mutant barley lipoxygenase 1 gene (lox-1) that encodes an enzyme with severely reduced 9-hydroperoxy-octadecadienoic acid forming activity. The invention also relates to the use of barley cultivars homozygous for mutated lox-1 in brewing processes to reduce the formation of off-flavors in brewed products, such as beer, during storage.
BACKGROUND OF THE INVENTION
Lipoxygenases are a family of enzymes (EC 1.13.11.12) that catalyze the dioxidation of free and esterified poly-unsaturated fatty acids containing a 1(Z), 4(Z)-pentadiene configuration. The products of lipoxygenase-catalyzed reactions have long been suspected as major culprits for the appearance of stale flavors in plant grain/seed and grain/seed derived food products (Robinson et al., 1995
, Food Chem.,
54: 33-43). Lipoxygenases have been implicated in the production of volatile hexanal aldehydes generated during soybean processing, which have an undesirable aroma, limiting the use of soybean proteins in food products. Three lipoxygenase isozymes expressed in soybean seed are believed to contribute to lipid oxidation and hexanal formation. Soybean mutants lacking one or more of these isozymes have been generated with the aim of reducing hexanal formation and improving their flavor stability. The success of this approach has been evaluated by Hildebrand et al., 1990
, J. Agric. Food Chem.
38: 1934-1936. Mutants lacking soybean lipoxygenase 3 produced higher hexanal levels, suggesting that this isozyme diverts 13-hydroxyperoxyoctadecanoids, produced by lipid oxidation, towards non-volatile products. The field performance of triple-null soybean lines, lacking all three seed lipoxygenases, has shown that these enzymes are not essential for normal agronomic and seed characteristics (Narvel et al., 1998
, Crop Sci.
38: 926-928).
Lipoxygenases have also been implicated in the generation of off-flavors in rice, which can occur during grain storage. The release of free fatty acids can be detected in stored grain, which is indicative of the metabolism of the triglyceride reserves. The rice variety Daw Dam was found to accumulate lower levels of pentanals and hexanals giving a better flavor stability on storage (Susuki et al., 1999
, J. Agric. Food Chem.,
47: 1119-1124). This desirable phenotype was attributed to the absence of rice lipoxygenase-3, which oxidizes unsaturated lipid acyl chains to form 9-hydroperoxyoctadecadienoic positional isomers.
It is recognised that the lipoxygenase pathway is complex with many branches and its role in numerous aspects of plant growth and physiology are not fully understood. Modifications of the lipoxygenase pathway which alter 9-hydroperoxidation activity in seed crops are proposed to regulate their susceptibility to mycotoxin contamination by Aspergillus spp. (WO 9726364), which is consistent with the involvement of this pathway in plant pathogen resistance, but is not related to the aims of the invention herein described.
Among the many aroma volatiles which contribute to the flavor of beer, the higher unsaturated aldehydes with a 6-12 carbon chain have particularly low organoleptic flavor thresholds (Meilgaard 1975
, MBAA Tech. Quart.
12: 151-168). Trans-2-nonenal, which is a member of this group, has both an extremely low flavor threshold of 0.11 ppb and contributes an unpleasant straw-like, “cardboard” flavor to the beer. The characteristic off-flavor caused by trans-2-nonenal is a common characteristic of beers stored for 1-3 months or more and is particularly detrimental to the flavor of lager beer, which is brewed with light malts and has a delicate flavor.
Sulfite has long been known to improve the flavor stability of beer, not only by binding oxygen and acting as an anti-oxidant, but also by forming volatile bisulfite addition compounds with aldehydes and ketones present in the beer. The two major sources of sulfite in beer are sulfite produced by yeast during fermentation via the sulfur assimilation pathway and sulfite added to the beer prior to packaging. Fermentation conditions that enhance yeast sulfite production and secretion will allow the formation of sulfite-carbonyl adducts from carbonyls present in the wort and prevent their further metabolism by the yeast (Dufour 1991
, Proc.Eur. Brew. Conv. Congr
., Lisbon, pp. 209-216). In this manner carbonyls such as acetaldehyde and diacetyl may be transferred to the beer. The ability of sulfite to prevent the appearance of the carbonyl compound trans-2-nonenal during beer aging has been demonstrated by brewing beer with a yeast strain blocked in the sulfur assimilation pathway (Johannesen et al., 1999
, Proc.Eur. Brew. Conv. Congr
., Nice, pp. 655-662). Following bottling, the beer was subjected to forced aging by storing it at 37° C. for 7 days, after which trans-2-nonenal levels were found to be well above the taste-threshold. If 10 ppm sulfite was added to the low-sulfite beer just prior to bottling, the appearance of trans-2-nonenal during forced aging was significantly reduced. The reaction between sulfite and carbonyl compounds is reversible and under thermodynamic and kinetic control. The apparent equilibrium constants for bisulfite compounds ranges from 10
−6
M for carbonyl compounds such as acetaldehyde, hexanal, and decanal, to 10
−3
for diacetyl and pyruvate (Dufour 1991, supra). During beer storage, gas exchange through the packaging will allow oxygen into the beer and sulfite will be lost, such that weaker bisulfite adducts will dissociate, allowing free carbonyls to appear in the beer. While sulfite unquestionably enhances the flavor-stability of beer, particularly in the short-term, its retention in packaged beer is strongly dependent on gas exchange through the packaging and temperature. In a finished beer the natural levels of sulfite produced during fermentation are variable and the addition of sulfite prior to bottling is not a universally accepted practice. For these reasons sulfite alone does not provide a reliable method to enhance the long-term flavor-stability of beer under the different beer storage conditions used around the globe.
It is generally accepted that the trans-2-nonenal found in beer results from the oxidation of polyunsaturated fatty acids derived from barley grain lipids, where the 18-carbon chain fatty acid, linoleic acid [classified as an 18:2,n-6 polyunsaturated fatty acid (Broun, Gettner and Sommerville 1999
, Annu. Rev. Nutr
. 19: 197-216)] is the most abundant. However, there is little agreement in the literature as to the mechanism whereby trans-2-nonenal is formed. The presence of enzymatic pathways leading to trans-2-nonenal formation from poly-unsaturated fatty acids has been proposed, but the individual enzymatic steps have never been demonstrated experimentally in barley grain or during the malting process (Gardner 1988
, Adv. Cereal Sci. Technol
. 9: 161-215). The concept of using anti-sense or co-suppression gene technology to reduce lipoxygenase-1 levels in barley grain, and thereby control 9-hydroperoxidation and reduce aldehyde and alcohol levels in the finished barley grain, has been proposed as a means to control off-flavor formation, but results of such an approach are not reported (McElroy and Jacobsen, 1995
, Bio/Technology
13: 245-249).
A forcing test has been developed as a method for assessing the trans-2-nonenal potential of a beer, where trans-2-nonenal formation in wort or beer is induced by subjecting samples to elevated temperatures at reduced pH, (100° C., at pH 4.0 for 2 hours). Attempts to correlate the trans-2-nonenal potential in wort and finished beer with the total level of lipoxygenase activity in the kilned malt have indicated that lipoxygenase may contribute to the appearance of trans-2-nonenal in aged beer (Drost et al., 1990
, J. Am. Soc. Brew. Chem
. 48: 124-131). The conclusions that can be drawn from this study, however, are severely limited by the fact that the lipoxygenase activity in the barl
Bech Lene Moelskov
Cameron-Mills Verena
Doderer Albert
Douma Anna Christina
Heistek Jolanda Carolina
Fox David T.
Kallis Russell
Merchant & Gould P.C.
LandOfFree
Low lipoxygenase 1 barley does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Low lipoxygenase 1 barley, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low lipoxygenase 1 barley will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3178507