Low level laser therapy apparatus

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Light application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S088000, C606S003000, C606S011000

Reexamination Certificate

active

06312451

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to laser apparatus and more particularly, to low level laser therapy apparatus.
High energy laser radiation is now well-accepted as a surgical tool for cutting, cauterizing and ablating biological tissue. High energy lasers are routinely used to vaporize superficial skin lesions, to make superficial incisions such as those required for plastic surgery, and to make deep cuts required for major surgical operations. Such lasers accomplish their results thermally, by heating the tissue.
Less well-known is that low levels of laser energy have a non-thermal, biostimulative effect on biological tissues. The therapeutic application of low level laser energy, frequently known as low level laser therapy (LLLT), produces beneficial clinical effects in the treatment of musculoskeletal, neurological and soft tissue conditions. LLLT is non-invasive and avoids the potential side effects of drug therapy. More specifically, LLLT delivers photons to targeted tissue, penetrating the layers of skin to reach internal tissues to produce a specific, nonthermal photochemical effect at the cellular level. Jeffrey R. Basford, Laser Therapy: Scientific Basis and Clinical Role, O
RTHOPEDICS,
May 1993, at 541.
Known LLLT devices and methods involve the application of laser energy at a wavelength in the near to mid infrared range, under certain limited conditions which limit the dosage of laser energy being applied. Known LLLT devices and methods involve the limited application of laser energy with devices having a very low average power output well below 100 mW. Such devices require extended periods of time to deliver any given dosage to a treatment point. Especially when multiple points are being treated, and multiple treatments required, longer treatment times are a significant inconvenience for both technician and patient. Some LLLT methods involve the application of laser energy to limited, specified sites for specific reasons. For example, known LLLT methods for treating specific pain symptoms involves applying laser energy to specific, charted treatment points which are correlated with the specific pain symptoms. However, such methods are limited to the treatment of specific symptoms, do not identify specific laser energy dosages, and do not provide any guidelines for varying dosages for treatment of a range of tissue injuries.
It would therefore be desirable to provide LLLT apparatus and methods for the treatment of a wide range of injuries. It would also be desirable to provide LLLT apparatus with which laser energy dosage can be varied. It would be further desirable to provide an LLLT apparatus which is capable of delivering laser light at a power output higher than about 100 mW, so that treatment times are reduced. It would be still further desirable to provide such LLLT apparatus with means to set dosage within a predetermined range. It would be yet still further desirable to provide such an LLLT device with an electronic locking mechanism which restricts accessibility to the device to authorized personnel.
BRIEF SUMMARY OF THE INVENTION
These and other objects may be attained by low level laser therapy apparatus which includes a handheld laser probe coupled to a control unit. In one embodiment, the probe includes a probe head in which are mounted four 30 mW GaAlAs laser diodes, emitting laser energy having a wavelength of 830 nm. The diodes are mounted in the probe head at an angle so that the laser beams emitted from the diodes substantially overlap or intersect at about 1.7 cm away from the head, producing a combined mean power output of 120 mW in the area of overlap.
In one embodiment, the control unit limits laser energy dosages to the range of about 1 joule/point, to about 10 joules/point, where a point is defined as a spot having a diameter of about 1 cm. The control unit is an AC powered box housing electronics for controlling the operation of the LLLT apparatus. The control unit includes an output display window for displaying a pre-selected laser energy dosage level in joules, associated electronics and a microprocessor storing in memory the preselected dosage level, and at least one dosage selection element such as a switch, knob or the like for pre-selecting the dosage level.
The control unit further includes a locking element for controlling access to, and use of, the LLLT apparatus. The locking element is, in one embodiment, a keyed lock configured to allow the LLLT apparatus to be operated only by individuals having a matching key.


REFERENCES:
patent: 4630273 (1986-12-01), Inoue et al.
patent: 4633872 (1987-01-01), Chaffee et al.
patent: 4669466 (1987-06-01), L'Esperance
patent: 5464436 (1995-11-01), Smith
patent: 5616140 (1997-04-01), Prescott
patent: 5755752 (1998-05-01), Segal
patent: 5879376 (1999-03-01), Miller
patent: 6146410 (2000-11-01), Nagypal et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low level laser therapy apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low level laser therapy apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low level laser therapy apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2618456

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.