Low intake restriction air precleaner

Gas separation – Deflector – Fixed gas whirler or rotator means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C055S445000, C055S448000, C055S449000, C055S457000

Reexamination Certificate

active

06264712

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to devices for separating particulates from the air such as dirt, dust, rain, and snow before they enter the air stream of an engine, air compressor, or similar apparatus.
BACKGROUND OF THE INVENTION
Air precleaners are devices typically used in the removal of dust, dirt, sand, rain, snow, and other airborne particulates in the air prior to the flow of air to the carburetor of an internal combustion engine. Such precleaners promote more efficient combustion and longer engine and filter life. The efficiency of the precleaner is determined by the percentage of particulates that are removed from the intake air by the precleaner. The more efficient the precleaner, the lesser the amount of particulates that must be removed by the air filter.
The precleaners of the prior art have various configurations that are employed as a means of removing the particulates from the air. Examples of precleaners or particle separators are shown in U.S. Pat. Nos. 2,193,479; 2,304,778; 2,417,130; 2,973,830; 3,552,102; 3,670,480; 3,740,932; 3,791,112; 3,973,937; 4,138,761; 4,197,102; 4,547,207; 5,022,903; 5,449,391; and 5,505,756.
Although such precleaners may adequately perform with respect to particulate removal, this is sometimes accomplished at the expense of a reduced air flow, i.e., the precleaner itself may become an air restriction. There is generally a trade-off between efficiency of particulate renewal and air intake restriction. Continuing efforts have been made to develop air precleaners that efficiently remove particulates from the air with less air restriction.
SUMMARY OF THE INVENTION
An air precleaner in accordance with the present invention provides high efficiency removal of particulates from intake air while significantly reducing the air flow restriction encountered in the conventional prior air precleaners. The air precleaner of the invention includes a base assembly having an inlet port through which air enters and an outlet port through which air exits the precleaner, and a hood mounted to the base assembly which has a discharge port for discharging particulates, with the hood and base assembly defining an air space so that the air space and the inlet and outlet ports and the discharge port are in fluid communication. The hood is spaced from the base assembly to define a circumferential gap and a series of vanes are mounted in the gap at an angle between radial and tangential to define channels between them through which air is directed into the air space. A rotor assembly is rotatably mounted within the air space and rotates when air enters through the inlet port to fling particulates outwardly toward the hood for expulsion through the discharge port.
The vanes in the series of vanes are preferably equally spaced from one another around the periphery of the gap between the hood and base assembly to define inwardly converging channels between the vanes, and each vane is preferably although not necessarily formed as a flat plate. A flange may extend from a periphery of the hood at the gap to which the vanes are attached to further enclose the channels defined by the vanes and the flange. Preferably, the rotor assembly is mounted to the inside of the hood at a position above the position of the gap between the hood and base assembly. The base assembly may further comprise an inner circumferential wall that defines the outlet port and terminates in an inner end, and an outer circumferential wall that is connected to the inner circumferential wall by web supports, with a plurality of inlet ports being defined by the web supports and with the web supports angled to direct air upon the rotor assembly to cause it to rotate. The gap between the hood and base assembly is preferably at a position at least partially below the inner end of the wall that defines the outlet port.
As air is drawn into the precleaner as a result of the vacuum draw from the engine, etc., to which the precleaner is attached, the moving air passing through the inlet ports drives the rotor assembly to rotate and fling particles outwardly toward the inner surface of the hood. These particles are driven by centrifugal force along the inner surface of the hood until they exit through the discharge port, which may be formed as a vertical slot in a cylindrical side wall of the hood or in other conventional configurations. The side air injection in accordance with the present invention that is directed by the vanes through the gap provides inward and tangential air flow components that are added to the air flow from the inlet ports, causing a relatively free flow of air into the air precleaner with minimal restriction. The vanes are preferably mounted at an angle to a tangent to the periphery of the air precleaner which is selected to provide a desired tangential component of air flow, and adjacent vanes converge inwardly toward one another to define inwardly converging channels between them, thus increasing the air flow velocity of the air entering through the channels into the air space between the hood and the base assembly. The tangential component of velocity of the air injected through the channels between the vanes adds to the upward and tangential air flow from the inlet ports, thereby providing increased tangential velocity of the air that impacts upon the rotor, enhancing the rotational velocity of the rotor. In this manner, high efficiency of particulate removal is maintained in the air precleaner while substantially reducing the restriction of air flow into and through the air precleaner into the engine.
The air precleaner may be formed so that all of the intake air passes into the air space through the gap in which are mounted the vanes which define channels between them through which air is directed into the air space. The channels direct the air into the air space with a tangential velocity component that impacts against the rotor assembly to drive the rotor in the desired direction of rotation. The bottom of the air cleaner may be closed off to completely enclose the air space within the air cleaner except for the air inlet at the gap through the channels between the vanes and the air outlet through the outlet port. The base assembly may include an inner circumferential wall that defines the outlet port and that terminates in an inner end, with the bottom of the air cleaner being closed off by a plate that extends from the inner circumferential wall to the vanes at the gap. The vanes may be attached to a flange that extends outwardly from the periphery of the hood at the gap. The flange with vanes attached thereto may be formed as a separate part that is assembled into place in the gap as the hood is mounted to the base assembly. A plurality of flanges with vanes attached thereto may be mounted in stacked relation in the gap and be assembled in place. In this manner, the total effective area of air intake to the air precleaner, which is related to the effective restriction of air entering the precleaner, can be selected by selecting the desired number of flanges with vanes attached thereto that are mounted in stacked relation at the gap. A further advantage of the air precleaner in which the intake air enters only circumferentially and not through the bottom of the air precleaner is that the precleaner may be mounted very close to or even in contact with other surfaces, such as the hood of a vehicle, to thereby minimize the overall profile of the air precleaner and the space that it occupies.
Further objects, features, and advantages of the invention will be apparent from the following detailed description when taken in conjunction with the accompanying drawings.


REFERENCES:
patent: D. 422069 (2000-03-01), Decker
patent: 1641746 (1927-09-01), Donaldson
patent: 1870216 (1932-08-01), Baldwin
patent: 2193479 (1940-03-01), Donaldson
patent: 2304778 (1942-12-01), Cresswell
patent: 2417130 (1947-03-01), Russell
patent: 2973830 (1961-03-01), Gruner
patent: 3552102 (1971-01-01), Araki
patent: 3563004 (1971-02-01), Schouw
patent: 3670480 (1972-06-01), Pete

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low intake restriction air precleaner does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low intake restriction air precleaner, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low intake restriction air precleaner will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2549083

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.