Optical: systems and elements – Optical amplifier – Multiple pass
Reexamination Certificate
2006-03-21
2006-03-21
Hellner, Mark (Department: 3663)
Optical: systems and elements
Optical amplifier
Multiple pass
C372S098000
Reexamination Certificate
active
07016107
ABSTRACT:
A regenerative amplifier system that is optimized for low-gain gain media is provided. The system is configured to include a minimum number of intra-cavity elements while still eliminating the leakage of the seed pulses from the output beam. In addition, the contrast ratio of the amplified pulses is increased even considering the long build-up time that is required in low-gain regenerative amplifiers. This is accomplished using a single Pockels cell between the oscillator and amplifier to select a single seed pulse for the cavity, instead of using a Faraday isolator. This directs the unwanted seed pulses in a separate direction from the output pulse. When the amplified pulse exits the cavity, it is directed in a direction away from the oscillator by the same Pockels cell. Only one additional Pockels cell and one polarizer are required inside the regenerative amplifier cavity.
REFERENCES:
patent: 4191928 (1980-03-01), Emmett
patent: 4896119 (1990-01-01), Williamson et al.
patent: 5239408 (1993-08-01), Hackel et al.
patent: 5790303 (1998-08-01), Weston et al.
patent: 6002697 (1999-12-01), Govorkov
patent: 6150630 (2000-11-01), Perry et al.
patent: 6197133 (2001-03-01), Unternahrer et al.
patent: 6621040 (2003-09-01), Perry et al.
patent: 2002/0085608 (2002-07-01), Kopf et al.
patent: 2002/0110168 (2002-08-01), Haumesser et al.
patent: 2002/0126715 (2002-09-01), Gerstenberger et al.
patent: 2003/0147443 (2003-08-01), Backus et al.
patent: 2003/0189959 (2003-10-01), Erbert et al.
Rundle, W.J. A ruby laser modified for pulse-trnasmission mode cavity dumping. Journal of App. Phys. vol. 39, No. 11, pp. 5338-5339. Oct. 1968, USA.
Olson, Ron. A Terawatt on a tabletop. Lasers and Optronics, vol. 11, No. 11, pp 13-14. Oct. 1992, USA.
Brunner, F., et al., “240-FS Pulses with 22-W Average Power from a Mode-Locked Thin-DiskYb:KY (WO4)2 Laser”, Optics Letters, vol. 27, No. 13, pp. 1162-1164, Jul. 1, 2002.
Innerhofer, E. et al., “60-W Average Power in 810-FS Pulses from a Thin-Disk Yb:YAG Laser”, Optics Letters, vol. 28, No. 5, pp 367-369, Mar. 1, 2003.
Südmeyer, T., et al., “High-Power Femtosecond Nonlinear Devices Pumped with a Mode-Locked Thin Disk Laser”, Lasers and Electro-Optics Europe, p. 245, Jun. 22, 2003.
Paschotta, R., et al. “Ultrashort Pulses with High Average Power”, Proceedings of the SPIE, vol. 5137, pp. 66-72, (2003).
U. Brauch, et al., “Multiwatt Diode-Pumped Yb:YAG Thin Disk Laser Continuously Tunable Between 1018 and 1053 nm”, Optics Letters, vol. 20, No. 7, pp. 713-715, Apr. 1, 1995.
A Beyertt, et al., “CPA-free Femtosecond Thin Disk Yb:KYW Regenerative Amplifier with High Repetition Rate”, Advanced Solid State Photonics 2004.
M.J. Lederer, et al., Femtosecond Diode Pumped Reenerative Amplifier for Micromachining and Biomedical Applications Producing 250fs, 3μ J-pulses at 100kHz, Conference on Lasers and Electo-Optics, 2004.
H. Liu, et al., “Yb:KGd (WO4)2 Chirped-Pulse Regenerative Amplifiers” Optics Communications, 203:315-321, 2002.
Antoine Courjaud, et al.,“Diode Pumped Multikilohertz Femtosecond Amplifier”, Advanced Solid State Phontonics, 2002.
A. Beyertt, et al., “Femtosecond Thin Disk Yb:KYW Regenerative Amplifier without CPA”, Advanced Solid State Photonics, pp. 372-375, 2003.
Detlef Nickel, et al., “Ultrafast Thin-Disk Yb:KY(WO4)2 Regenerative Amplifier with a 200 kHz Repetition Rate”, Optical Letters, vol. 29, No. 23, pp. 2764-2766, Dec. 1, 2004.
Tatsuya Tomaru, “Two-Element-Cavity Femtosecond CR4+:YAG Laser”, Conference on Lasers and Electro-Optics, 2001.
J. Limpert, et al., “All Fiber CPA System based on Air-Guiding Photonic Badgap Fiber Compressor”, Confernce on Lasers and Electro-Optics, Optical Society of America, pp. 1-2, 2003.
A. Tünnermann, et al. High Power Femtosecond Fiber CPA Systems-Design and Applications, Conference on Lasers and Electro-Optics, Optical Society of America, pp. 1-2, 2003.
J. Limpert, High-Average-Power Femtosecond Fiber Chirped-Pulse Amplification System, Optics Letters, vol. 28, No. 20, pp. 1984-1986, Oct. 15, 2003.
J. Limpert, et al., “All Fiber Chirped-Pulse Amplification System Based on Compression in Air-Guiding Photonic Bandgap Fiber”, Optical Society of America Optics Express, vol. 11, No. 24, pp. 3332-3337, Dec. 1, 2003.
R. Maleck-Rassoul, et al., “Sub-40 fs Pulses from a 500 fs Green-Pumped Single-Pass Noncollinear Parametric Amplifier”, Optical Society of America, Advanced Solid State Photonics, 2002.
C. Hönninger, et al., “Diode-Pumped Thin-Disk Yb:YAG Regenerative Amplifier”, Applied Physics B (laser and Optics), 65:423-426, 1997.
http://www.imra.com/lasers-prod-fcpa.html, IMRA America, Inc., “FCPA μJewel Series”.
http://www.amplitude-systemes.com/sPulse.htm, Amplitude Systems, “S-Pulse Femtosecond Amplifier”.
Bado, P. et al., “Nd:YLF Mode-Locked Oscillator and Regenerative Amplifier”; Optics Letters; May 1987; vol. 12, No. 5; pp. 319-321.
Bagnoud, V. et al. “Diode-Pumped Regenerative Amplifier Delivering 100-mj Single-Mode Laser Pulses”; Optics Letters; Mar. 15, 2001; vol. 26, No. 6; pp. 337-339.
Balembois, F. et al., “High-Repetition-Rate Cw-Pumped Cr3+: LiSrAlF6 Fermtosecond Regenerative Amplifier”; Optics Letters, vol. 18, No. 15; Aug. 1, 1993; pp. 1250-1252.
Barty, C.J. et al., “Regenerative Pulse Shaping and Amplification of Ultrabroadband Optical Pulses”; Optics Letters; Feb. 1, 1996; vol. 21, No. 3; pp. 219-221.
Barty, C.J. et al., “Generation of 18-fs, Multiterawatt Pulses by Regenerative Pulse Shaping and Chirped-Pulse Amplification”; Optics Letters; vol. 21, No. 9; May 1, 1996; pp. 668-670.
Beaud, P. et al., “8-TW 90-fs Cr:LiSAF Laser”; Optics Letters; vol. 18, No. 18; Sep. 15, 1993; pp. 1550-1552.
Braun, A. et al., “Diode-Pumped Nd:Glass Kilohertz Regenerative Amplifier For Subpicosecond Microjoule Level Pulses”; Applied Optics; vol. 36, No. 18; Jun. 20, 1997; pp. 4163-4167.
Coe, J.S. et al., “Regenerative Amplification of Picosecond Pulses in Nd:YLF:Gain Narrowing and Gain Saturation”; J. Opt. Soc.Am.B; vol. 5, No. 12; Dec. 1998; pp. 2560-2563.
Dawson, M. et al., “Characterization of a High-Gain Picosecond Flash-Lamp-Pumped Nd:YAG Regenerative Amplifier”; Optics Letters; vol. 13, No. 11; Nov. 1988; pp. 990-992.
Dimmick, T. “Semiconductor-Laser-Pumped, cw mode-locked Nd: Phosphate Glass Laser Oscillator and Regenerative Amplifier”; Optics Letters; vol. 15, No. 3; Feb. 1, 1990; pp. 177-179.
Durfee, C.G. et al., “Pulse Compression in a Self-Filtering Nd: YAG Regenerative Amplifier”; Optics Letters; vol. 17, No. 1; Jan. 1, 1992; pp. 37-39.
Evans, J.M. et al., “Kilohertz Cr: Forsterite Regenerative Amplifier”; Optics Letters; vol. 23, No. 21, Nov. 1, 1998; pp. 1692-1694.
Fu, Q. et al., “High-Average-Power Kilohertz-Repetition-Rate Sub-100-fs Ti:Sapphire Amplifier System”; Optics Letters; vol. 22, No. 10, May 15, 1997; pp. 712-714.
Gifford, M. et al., “Diode-Pumped Nd:YLF Regenerative Amplifier”; Optics Letters; vol. 17, No. 24; Dec. 15, 1992; pp. 1788-1790.
Hankla, A.K. et al., “Tunable Short-Pulse Beat-Wave Laser Source Operating at 1 μm”, Optics Letters, vol. 22, No. 22; Nov. 15, 1997; pp. 1713-1715.
Hariharan, A. et al., “Alexandrite-Pumped Alexandrite Regenerative Amplifier For Femtosecond Pulse Amplification”, Optics Letters, vol. 21, No. 2, Jan. 15, 1996; pp. 128-130.
Hofer, M. et al., “Regenerative Nd:Glass Amplifier Seeded With a Nd: Fiber Laser”, Optics Letters; vol. 17, No. 11; Jun. 1, 1992; pp. 807-809.
Horvath, C. et al., Compact Directly Diode-Pumped Femtosecond Nd: Glass Chirped-Pulse-Amplification Laser System; Optics Letters; vol. 22, No. 23; Dec. 1, 1997; pp. 1790-1792.
Hyde, S.C.W. et al.,
Holsinger Kevin
Kafka James D.
Zhou Jianping
Davis Paul
Diacou Ari M.
Heller Ehrman LLP
Hellner Mark
Spectra Physics Inc.
LandOfFree
Low-gain regenerative amplifier system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Low-gain regenerative amplifier system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low-gain regenerative amplifier system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3600940