Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Composite having voids in a component
Reexamination Certificate
1999-03-04
2001-06-19
Zirker, Daniel (Department: 1771)
Stock material or miscellaneous articles
Web or sheet containing structurally defined element or...
Composite having voids in a component
C428S480000
Reexamination Certificate
active
06248433
ABSTRACT:
TECHNICAL FIELD
The present invention relates to thermally insulative materials and, more particularly, to an improved sheet insulation of the reflective bubble type for use, for instance, in arenas, etc.
BACKGROUND ART
There are three modes of heat transfer: conduction, convection and radiation (infrared). Of the three, radiation is the primary mode; conduction and convection are secondary and come into play only as matter interrupts or interferes with radiant heat transfer. As the matter absorbs radiant energy, it is heated, develops a difference in temperature, and results in molecular motion (conduction in solids) or mass motion (convection in liquids and gases).
All substances, including air spaces, building materials, such as wood, glass and plaster, and insulation, obey the same laws of nature, and transfer heat. Solid materials differ only in the rate of heat transfer which is mainly affected by differences in density, weight, shape, permeability and molecular structure. Materials which transfer heat slowly can be said to resist heat flow.
Conduction is direct heat flow through matter (molecular motion). It results from actual physical contact of one part of the same body with another part, or of one body with another. For instance, if one end of an iron rod is heated, the heat travels by conduction through the metal to the other end; it also travels to the surface and is conducted to the surrounding air which is another, but less dense, now abandoned. An example of conduction through contact between two solids is a cooking pot on the solid surface of a hot stove. The greatest flow of heat possible between materials is where there is direct conduction between solids. Heat is always conducted from warm to cold; never from cold to warm and always moves via the shortest and easiest route.
In general, the more dense a substance, the better conductor it is. Solid rock, glass and aluminum, being very dense are good conductors of heat. Reduce their density by mixing air into the mass, and their conductivity is reduced. Because air has low density the percentage of heat transferred by conduction through air is comparatively small. Two thin sheets of aluminum foil with about one inch of air space in between weigh less than one ounce per square foot. The ratio is approximately 1 of mass to 100 of air, most important in reducing heat flow by conduction. The less dense the mass the less will be the flow of heat by conduction thereby resulting in a better insulative material.
Convection is the transport of heat within a gas or liquid, caused by the actual flow of the material itself (mass motion). In building spaces, natural convection heat flow is largely upward, somewhat sideways, not downwards. This is called “free convection”. For instance, a warm stove, person, floor, wall, etc., loses heat by conduction to the cooler air in contact with it. This added heat activates (warms) the molecules of the air which expand, becoming less dense, and rise. Cooler, heavier air rushes in from the side and below to replace it.
Convection may also be mechanically induced, as by a fan. This is called “forced convection”.
Radiation is the transmission of electromagnetic rays through space. Infrared rays occur between light and radar waves, i.e. between the 3 and 15 micron portion of the spectrum. Henceforth, when we speak of radiation, we refer only to infrared rays. Each material whose temperature is above absolute zero (−459.7° F.) emits infrared radiation, including the sun, icebergs, stoves or radiators, humans, animals, furniture, ceilings, walls, floors, etc.
All objects radiate infrared rays from their surfaces in all directions, in a straight line, until they are reflected or absorbed by another object. traveling at the speed of light, these rays are invisible, and they have no temperature, only energy. Heating an object excites the surface molecules, causing them to give off infrared radiation. When these infrared rays strike the surface of another object, the rays are absorbed, and only then is heat produced in the object. This heat spreads throughout the mass by conduction. The heated object then transmits infrared rays from exposed surfaces by radiation, if these surfaces are exposed directly to an air space.
The amount of radiation emitted is a function of the emissivity factor of the source's surface. Emissivity is the rate at which radiation (emission) is given off. Absorption of radiation by an object is proportional to the absorptivity factor of its surface which is the reciprocal of its emissivity.
Although two objects may be identical, if the surface of one were covered with a material of 90% emissivity, and the surface of the other with a material of 5% emissivity, there would result a drastic difference in the rate of radiation flow from these two objects. The lower the emissivity, the lower the radiation. This is demonstrated by comparison of four identical, equally heated iron radiators covered with different materials. Paint one with aluminum paint and another with ordinary enamel. Cover the third with asbestos and the fourth with aluminum foil. Although all have the same temperature, the one covered with aluminum foil would radiate the least (lowest, e.g. 5%, emissivity). The radiators covered with ordinary paint or asbestos would radiate most because they have the highest emissivity (even higher than the original iron). Painting over the aluminum paint or foil with ordinary paint changes the surface to 90% emissivity and thus increases the radiatiors's radiant heating capacity.
Materials whose surfaces do not appreciably reflect infrared rays, for example paper, asphalt, wood, glass and rock, have absorption and emissivity rates ranging from 80% to 93%. Most materials used in building construction (brick, stone, wood, paper, etc.) regardless of their color, absorb infrared radiation at about 90%.
The surface of aluminum has the ability not to absorb, but to reflect, 95% of the infrared rays which strike it. Since aluminum foil has such a low mass to air ratio, very little conduction can take place, particularly when only 5% of the rays are absorbed.
In order to retard heat flow by conduction, walls and roofs are built with internal air spaces. Conduction and convection through these air spaces combined represent only 20% to 35% of the heat which pass through them. In both winter and summer, 65% to 80% of the heat that passes from a warm wall to a colder wall or through a ventilated attic does so by radiation.
The value of air spaces as thermal insulation must include the character of the enclosing surfaces. The surfaces greatly affect the amount of energy transferred by radiation, depending on the material's absorptivity and emissivity, and are the only way of modifying the total heat transferred across a given space. The importance of radiation cannot be overlooked in problems involving ordinary room temperatures.
Reflection and emissivity by surfaces can only occur in space. The ideal space is any dimensioned ¾″ or more. Smaller spaces are also effective, but decreasingly so. Where there is no air space, we have conduction through solids. When a reflective surface of a material is attached to a ceiling, floor or wall, the at particular surface ceases to have radiant insulation value at the points in contact. Therefore, care must be exercised, when installing foil insulation, that it be stretched sufficiently to insure that any inner air spaces are properly opened up and that metal does not touch metal. Otherwise, conduction through solids will result at the point of contact.
Heat control with aluminum foil is made possible by taking advantage of its low thermal emissivity and the low thermal conductivity of air. It is possible with layered foil and air to practically eliminate heat transfer by radiation and convection.
There is no such thing as a “dead” air space as far as heat transfer is concerned, even in the case of a perfectly air-tight compartment such as a thermos bottle. Convection currents are inevitable with differences in
Krona Industries Ltd.
Swabey Ogilvy Renault
Zirker Daniel
LandOfFree
Low emissivity, high reflectivity insulation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Low emissivity, high reflectivity insulation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low emissivity, high reflectivity insulation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2526458